博弈论与信息经济学

1．不确定性下的理性决策

深圳大学经济学院会计学学术学位硕士研究生 专业选修课（2023－2024）
主讲：黄嘉平 中国经济特区研究中心讲师 工学博士 经济学博士
办公室：粤海校区汇文楼1510 Email：huangjp＠szu．edu．cn

偏好和理性选择

生活中的个人决策问题

- 简单的决策
- 早饭吃什么？
- 下午上课要不要带伞？
- 今天领到了 1000 元奖学金，晚上要不要出去庆祝一下？
- 复杂的决策
- 导师要申请一个科研项目，让我起草申报书，我应该怎么办？
- 三年后打算去美国读博士，我应该怎样计划这三年的学习生活？
- 我的目标是在 35 岁实现财务自由，从现在起我应该怎么办？
- 如何安排实习和科研？（相对确定的环境）
- 要不要读博？毕业后选择哪个行业？中途是否需要转行？（伴随着不确定因素，如经济走势，科技发展等）
- 结不结婚？要不要孩子？什么时候？

个人决策问题的基本组成要素

个人决策问题包含以下三个特征：
1．行动（action）：参与人（即决策者）可以选择的所有备选项，通常写作集合 A
2．结果（outcome）：每个行动带来的可能后果，通常写作集合 X
3．偏好（preference）：参与人对所有结果的排序，以偏好关系 \gtrsim 表达
偏好关系（preference relation）＂\gtrsim＂是一种二元关系，$x \gtrsim y$ 代表＂x 不比 y 差＂，或参与人＂喜好 x 的程度不低于喜好 y 的程度＂

- 在＂早饭吃什么？＂中，
- 行动的集合包括各种早饭类型，例如 $A=\{$ 煎饼果子，肠粉，热干面，$\ldots\}$
- 结果的集合是吃了每一种早饭，可以写成 $X=\{$ 吃煎饼果子，吃肠粉，吃热干面，$\ldots\}$ ，也可以具体到吃每一种早饭带来的饱腹感 $X^{\prime}=\{0.8,0.7,0.9, \ldots\}$
－参与人对于结果的偏好可能是
吃煎饼果子 \gtrsim 吃肠粉，吃热干面 \succsim 吃肠粉，吃煎饼果子 \gtrsim 吃热干面，．．．

屚 4 子

－偏好关系 $\begin{gathered}\text { 包含两层含义，即严格偏好关系（strict preference relation）和无差异关 }\end{gathered}$系（indifference relation）

- 严格偏好关系 $>: x>y$ 代表＂x 比 y 好＂或＂比起 y 我更喜欢 x＂
- 无差异关系 $\sim: x \sim y$ 代表＂x 和 y 一样好＂或＂我对 x 和 y 的喜好程度一样＂

我们熟悉的 \geq 也是一种（数字间的）二元关系，可对比 \gtrsim 和 \geq 间的异同

- 满足下面两个公理的偏好关系称为理性偏好关系（rational preference relation）
- 完备性公理（the completeness axiom）：偏好关系 \gtrsim 是完备的，即任意两个结果 $x, y \in X$都可以用它进行排序（ $x \gtrsim y$ 或 $y \gtrsim x$ ）
－传递性公理（the transitivity axiom）：偏好关系 \gtrsim 是可传递的，即任意三个结果 $x, y, z \in X$ ，若 $x \gtrsim y, y \gtrsim z$ ，则 $x \gtrsim z$
－我们只考虑具有理性偏好的参与人

完备性与传递性为什么重要

不可传递关系的例子
孔多塞悖论（Condorcet paradox）

$$
\begin{array}{lc}
\text { 小明: } A>C \succ B & \\
\text { 小刚: } C \succ B \succ A & \\
\text { 小红: } B \succ A>C & \\
\text { 三人合计: } & \\
\text { 两人支持 } A>C & \text { 少数服从多数+可传递性 } \\
\text { 两人支持 } C \succ B & \Rightarrow A>B, B \succ A \\
\text { 两人支持 } B>A & \text { 集体决策失败 }
\end{array}
$$

支付函数

- 当参与人都具有理性偏好时，我们可以将决策问题的结构简化- 我们已经了解了 \gtrsim 和 \geq 的相似性，即 \geq 具备完备性和传递性
$-\gtrsim$ 是结果间的比较（相对比较麻烦），而 \geq 是实数间的比较（我们更熟悉，例如效用最大化，成本最小化等问题）
支付函数（payoff function）：考虑函数 $u: X \rightarrow \mathbb{R}$ 。如果对于任意 $x, y \in X$ ，

$$
u(x) \geq u(y) \quad \text { iff } \quad x \gtrsim y
$$

则称 u 表达了偏好关系 \gtrsim
定理：如果结果的集合 X 是有限的，则 X 上的任意理性偏好关系都可以用一个支付函数表达
1．因为 X 的要素有限，根据完备性和传递性，我们可以找到 X 中最不被喜好的要素集合 X_{1} ，并给其要素赋值 u_{1}
2．从 X 中剔除 X_{1} 后，重复上面的操作直至全部要素都被剔除
3．这样我们就用 $u: X \rightarrow\left\{u_{k} \in \mathbb{R} \mid u_{1}<u_{2}<\cdots\right\}$ 表达了这个偏好关系

决策树

Decision tree

FIGURE 1．1 A simple breakfast decision tree．

理性选择

－参与人基于支付函数最大化而选择最优行动的方式被称为理性选择（rational choice）
理性选择的假设：参与人充分理解决策问题的如下要素

- 所有可能的行动，即 A
- 所有可能的结果，即 X
- 每一种行动如何体现为结果的变化
- 自身对结果的理性偏好（即自身的支付函数）
- 参与人通过比较结果或其收益（支付函数的取值）选择最优行动，如果我们能直接从行动定义支付函数，决策问题会更加简单
－如果存在函数 $x: A \rightarrow X$ ，则可以定义复合函数 $v=u \circ x$ ，将行动 a 的收益表达为 $v(a)=u(x(a)$ ）。此时，基于 v 的最大化选择最优行动的参与人称为理性参与人

例题：水果和糖

- 一家小卖店以 0.5 元／根的价格出售香蕉，同时以 0.25 元／颗的价格出售糖
- 你可以将吃香蕉和糖带来的满足感换算成货币价值（即支付函数）
- 吃第一根香蕉的收益是 1.2 元，此后每多吃一根，收益都是前一根的一半
- 吃第一颗煻的收益是 0.4 元，此后每多吃一颗，收益都是前一颗的一半
- 从吃香蕉和吃糖获得的收益互不影响（没有外部性）

问题：
1．假设你身上只有 1.25 元，你的行动集是什么？
2．画出你的决策树
3．你应当花掉所有的钱吗？

不确定性与时间

彩票

Lottery

- 彩票（lottery）是表达随机收益的一种方式
- 设想一个初创公司正面临着是否要扩大规模的决策，其行动集是 $A=\{g=$ 扩大，$s=$ 维持现状 $\}$
- 结果有两种，成功可以带来的利润为 10 ，失败带来的利润为 0 ，因此结果集是 $X=\{0,10\}$
- 和以往不同的是，行动和结果之间没有确定的关系：如果选择 g ，则成功的概率是 0.75 ；如果选择 s ，则成功的概率为 0.5
- 参与人实质上是在 g 和 s 两个彩票间进行选择
- 为了方便讨论，我们将彩票的结果当做另一个参与人＂自然＂（Nature）做出的决策

彩票

Lottery

结果集 $X=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ 上的简单彩票（simple lottery）是一个概率分布 $p=\left(p\left(x_{1}\right), p\left(x_{2}\right), \ldots, p\left(x_{n}\right)\right)$ ，其中 $p\left(x_{k}\right) \geq 0$ 是 x_{k} 发生的概率
－简单彩票是最终结果上的概率分布，然而，有时不确定性不只发生在最终结果上，也有可能发生在决策过程中，为了对应这种情况，我们将不同彩票上的概率分布（即彩票的彩票）称为复合彩票（compound lottery）

- 假设初创公司扩大规模的结果分为两个层面：
- 扩张本身是否成功：成功概率为 0.625
- 扩张后的经营是否成功：

如果扩张成功，则经营成功的概率为 0.9
如果扩张失败，则经营成功的概率为 0.5
－连续结果集上的简单彩票是一个连续分布的累积分布函数（CDF）$F(x)$

随机结果的评价

－现在我们可以认为参与人对行为的选择实际上是在选择更好的彩票，而对彩票的评价应当基于收益的期望值如果 $u(x)$ 是 $X=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ 上的支付函数，$p=\left\{p_{1}, p_{2}, \ldots, p_{n}\right\}$ 是 X 上的彩票，则 p 的期望收益是

$$
E[u(x) \mid p]=\sum_{k=1}^{n} p_{k} u\left(x_{k}\right)
$$

如果 X 是连续的，$F(x)$ 是 X 上的彩票，且其密度函数是 $f(x)$ ，则期望收益是 $E[u(x) \mid F]=\int_{x \in X} u(x) f(x) d x$
－带有扩张成本的决策问题

$$
\begin{aligned}
& v(g)=E[u(x) \mid g]=0.75 \times 9+0.25 \times(-1)=6.5 \\
& v(s)=E[u(x) \mid g]=0.5 \times 10+0.5 \times 0=5
\end{aligned}
$$

风险态度

Risk attitude

- 当不存在不确定性时，参与人对具有相同收益的行动是无差异的
- 当存在不确定性时，相同的期望收益却有可能伴随着不同的风险程度，因此也影响参与人的选择
－考虑两个彩票 $p^{\prime}=\left(\frac{7}{12}, 0, \frac{5}{12}\right)$ 和 $p^{\prime \prime}=(0,1,0)$ ，而收益是 $(4,9,16)$
$-v\left(p^{\prime}\right)=\frac{7}{12} \times 4+\frac{5}{12} \times 16=9$
$-v\left(p^{\prime \prime}\right)=1 \times 9=9$

人们对确定性和不确定性的偏好称为风险态度（risk attitude）

- 风险回避（risk averse）：如果期望收益相同，选择确定的彩票
- 风险爱好（risk loving／seeking）：如果期望收益相同，选择不确定的彩票
- 风险中立（risk neutral）：如果期望收益相同，认为确定和不确定的彩票是无差异的

圣彼得堡悖论

St．Petersburg paradox

- 反复抛一枚公正的硬币（即出现正面的概率是0．5），直至出现反面为止
- 奖金池起初有 1 元钱，游戏每进行一轮，奖金池中的钱翻倍
- 游戏在第一次出现反面时结束，你会获得奖金池中所有的钱
- 你愿意为参加这个游戏付多少钱？

不确定性下的理性决策

参与人的支付函数为 $u(x)$ 时，其基于期望收益选择最优行动的方式是理性的，即从所有的 $a \in A$ 中选择 $a^{*} \in A$ ，当且仅当

$$
v\left(a^{*}\right)=E\left[u(x) \mid a^{*}\right] \geq E[u(x) \mid a]=v(a)
$$

－假设你工作几年后考虑是否读一个 MBA，你的选择会影响你之后的收入，但读 MBA 有成本

$v($ Get MBA $)=0.25 \times 22+0.5 \times 6+0.25 \times 2=9$
$v($ Dont＇t get MBA $)=0.25 \times 12+0.5 \times 8+0.25 \times 4=8$

多期决策问题

- 我们经常会遇到需要连续做出多次决策的情形，而后面的决策往往受到前面决策结果的影响
- 我们继续初创公司的例子，并假设公司在知道扩张结果后，可以继续选择是否进行市场营销（ m 为营销，d 为不营销），此时的决策树变为

在这个决策问题中，参与人有两次选择行为的机会
1．选择是否扩张 $\{g, s\}$
2．在选择扩张 g 并确定结果后，选择是否进行市场营销 $\{m, d\}$
自然也有两次决策的机会
i．在参与人选择 g 后，决定扩张是否成功
ii．在参与人做出其他决策后，决定公司经营是否成功
在多期决策问题中，我们假设

- 参与人在每一阶段都是理性的
- 决策方式被称为动态规划（dynamic programming）或逆向归纳（backward induction），即参与人在每个决策阶段都对后面可能发生的事进行预测，并做出理性选择

信息的价值

－如果在你决定是否读 MBA 之前，有一个先知可以有偿地告诉你毕业后的就业形势，那么你愿意为这个预言付多少钱呢？

例题：赛狗

- 假设你去美国的拉斯维加斯旅游，并有机会观看一场赛狗比赛
- 在参赛犬中，有一只拉布拉多和一只边牧引起了你的关注
- 下注拉布拉多需要 1 美元，如果获胜你会获得 2 美元
- 下注边牧也需要 1 美元，如果获胜你会获得 11 美元
- 从赛前信息你了解到，拉布拉多获胜的概率是 0.7 ，而边牧获胜的概率是 0.1
- 你对其他的参赛犬不感兴趣
- 你可以选择不下注，或者下注两只狗中的一只。你的目的是赢更多的钱

问题：
1．画出这个问题的决策树
2．你的最佳决策是什么？你的最大期望收益是多少？
3．如果决定下注，你有机会加入＂反向保险＂，即赛前你收到 2 美元，而赛后你需要交出赢的钱的一半。你可以选择接受或者不接受这个反向保险。画出新的决策树并找到最优行动

例题：存钱还是花钱

- 假设你现在有 100 元，你需要决定如何在三天内 $(t=1,2,3)$ 将它花掉
- 你在第 t 天花的钱记作 x_{t} ，消费带来的效用是 $u(x)=\ln x$ ，末来效用的折现因子是 $\delta=0.9$ ，因此消费计划 $\left(x_{1}, x_{2}, x_{3}\right)$ 的效用现值是 $u\left(x_{1}\right)+\delta u\left(x_{2}\right)+\delta^{2} u\left(x_{3} 3\right)$

问题：
1．你会怎样分配这 100 元？
2．如果明天 $(t=2)$ 你会另外收到20元，你会怎样分配初始的 100 元和额外的 20 元？

