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1. 不确定性下的理性决策



偏好和理性选择



⽣活中的个⼈决策问题

• 简单的决策 

- 早饭吃什么？ 

- 下午上课要不要带伞？ 

- 今天领到了1000元奖学⾦，晚上要不要出去庆祝⼀下？ 

• 复杂的决策 

- 导师要申请⼀个科研项⽬，让我起草申报书，我应该怎么办？ 

- 三年后打算去美国读博⼠，我应该怎样计划这三年的学习⽣活？ 

- 我的⽬标是在35岁实现财务⾃由，从现在起我应该怎么办？ 

• 如何安排实习和科研？（相对确定的环境） 

• 要不要读博？毕业后选择哪个⾏业？中途是否需要转⾏？（伴随着不确定因素，如经济⾛势、科技发展等） 

• 结不结婚？要不要孩⼦？什么时候？
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个⼈决策问题的基本组成要素

个⼈决策问题包含以下三个特征： 

1. ⾏动（action）：参与⼈（即决策者）可以选择的所有备选项，通常写作集合  

2. 结果（outcome）：每个⾏动带来的可能后果，通常写作集合  

3. 偏好（preference）：参与⼈对所有结果的排序，以偏好关系  表达 
 

偏好关系（preference relation）“ ”是⼀种⼆元关系，  代表“  不⽐  差”，或参与⼈“喜好  的程度
不低于喜好  的程度” 

• 在“早饭吃什么？”中， 

- ⾏动的集合包括各种早饭类型，例如  

- 结果的集合是吃了每⼀种早饭，可以写成 ，也可以具体到吃每⼀种早饭
带来的饱腹感  

- 参与⼈对于结果的偏好可能是 
 

吃煎饼果⼦  吃肠粉，吃热⼲⾯  吃肠粉，吃煎饼果⼦  吃热⼲⾯，…

A

X

≿
≿ x ≿ y x y x

y

A = {煎饼果⼦, 肠粉, 热⼲⾯, …}

X = {吃煎饼果⼦, 吃肠粉, 吃热⼲⾯, …}
X′ = {0.8, 0.7, 0.9, …}

≿ ≿ ≿
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偏好关系

• 偏好关系  包含两层含义，即严格偏好关系（strict preference relation）和⽆差异关
系（indifference relation） 

- 严格偏好关系  ：  代表 “  ⽐  好” 或 “⽐起  我更喜欢 ” 

- ⽆差异关系  ：  代表 “  和  ⼀样好” 或 “我对  和  的喜好程度⼀样” 

• 满⾜下⾯两个公理的偏好关系称为理性偏好关系（rational preference relation） 

- 完备性公理（the completeness axiom）：偏好关系  是完备的，即任意两个结果  
都可以⽤它进⾏排序（  或 ） 

- 传递性公理（the transitivity axiom）：偏好关系  是可传递的，即任意三个结果 
，若 , ，则  

• 我们只考虑具有理性偏好的参与⼈

≿

≻ x ≻ y x y y x

∼ x ∼ y x y x y

≿ x, y ∈ X
x ≿ y y ≿ x

≿
x, y, z ∈ X x ≿ y y ≿ z x ≿ z
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我们熟悉的  也是⼀种（数字间的）⼆元关系，可对⽐  和  间的异同≥ ≿ ≥



完备性与传递性为什么重要
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⾮完备关系的例⼦

⾮完备关系下，不能保证唯⼀的最优解

不可传递关系的例⼦


孔多塞悖论（Condorcet paradox）


        ⼩明： 

        ⼩刚： 

        ⼩红： 


    三⼈合计：

        两⼈⽀持 

        两⼈⽀持 

        两⼈⽀持 


A ≻ C ≻ B
C ≻ B ≻ A
B ≻ A ≻ C

A ≻ C
C ≻ B
B ≻ A

少数服从多数  可传递性

     ,   

          集体决策失败

+
⇒ A ≻ B B ≻ A



⽀付函数

• 当参与⼈都具有理性偏好时，我们可以将决策问题的结构简化 

- 我们已经了解了  和  的相似性，即  具备完备性和传递性 

-  是结果间的⽐较（相对⽐较麻烦），⽽  是实数间的⽐较（我们更熟悉，例如效⽤最⼤化、成本最⼩化等问题） 

⽀付函数（payoff function）：考虑函数 。如果对于任意 ， 
 

       iff     
 

则称  表达了偏好关系    

定理：如果结果的集合  是有限的，则  上的任意理性偏好关系都可以⽤⼀个⽀付函数表达 

1. 因为  的要素有限，根据完备性和传递性，我们可以找到  中最不被喜好的要素集合 ，并给其要素赋值  

2. 从  中剔除  后，重复上⾯的操作直⾄全部要素都被剔除 

3. 这样我们就⽤  表达了这个偏好关系

≿ ≥ ≥

≿ ≥

u : X → ℝ x, y ∈ X
u(x) ≥ u(y) x ≿ y

u ≿

X X

X X X1 u1

X X1

u : X → {uk ∈ ℝ ∣ u1 < u2 < ⋯}
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同⼀偏好关系可以对应不同的⽀付函
数，因此⽀付函数的取值本身没有意
义，取值间的⼤⼩⽐较才有意义



决策树
Decision tree
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1.2 The Rational Choice Paradigm . 9
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FIGURE 1.1 A simple breakfast decision tree.

the next chapter demonstrates, the structure of a decision tree will become slightly
more involved and useful to capture more complex decision problems. We will return
to similar trees in Chapter 7, where we consider the strategic interaction between
many possible players, which is the main focus of this book.

1.2 The Rational Choice Paradigm

We now introduce Homo economicus or “economic man.” Homo economicus is
“rational” in that he chooses actions that maximize his well-being as defined by
his payoff function over the resulting outcomes.7 The assumption that the player is
rational lies at the foundation of what is known as the rational choice paradigm.
Rational choice theory asserts that when a decision maker is choosing between
potential actions he will be guided by rationality to choose his best action. This can
be assumed to be true for individual human behavior, as well as for the behavior of
other entities, such as corporations, committees, or nation-states.

It is important to note, however, that by adopting the paradigm of rational choice
theory we are imposing some implicit assumptions, which we now make explicit.

Rational Choice Assumptions The player fully understands the decision problem by
knowing:

1. all possible actions, A;

2. all possible outcomes, X;

3. exactly how each action affects which outcome will materialize; and

4. his rational preferences (payoffs) over outcomes.

Perhaps at a first glance this set of assumptions may seem a bit demanding, and
further contemplation may make you feel that it is impossible to satisfy for most
decision problems. Still, it is a benchmark for a world in which decision problems are
completely understood by the player, in which case he can approach the problems
in a systematic and structured way. If we let go of any of these four knowledge

7. A naive application of the Homo economicus model assumes that our player knows what is best for
his long-term well-being and can be relied upon to always make the right decision for himself. We
take this naive approach throughout the book, though we will sometimes question how appropriate
this approach is.

决策节点

decision node

⽀付值

⾏动



理性选择

• 参与⼈基于⽀付函数最⼤化⽽选择最优⾏动的⽅式被称为理性选择（rational choice） 

理性选择的假设：参与⼈充分理解决策问题的如下要素 

- 所有可能的⾏动，即  

- 所有可能的结果，即  

- 每⼀种⾏动如何体现为结果的变化 

- ⾃身对结果的理性偏好（即⾃身的⽀付函数） 

• 参与⼈通过⽐较结果或其收益（⽀付函数的取值）选择最优⾏动，如果我们能直接从⾏动定义
⽀付函数，决策问题会更加简单 

• 如果存在函数 ，则可以定义复合函数 ，将⾏动  的收益表达为 
。此时，基于  的最⼤化选择最优⾏动的参与⼈称为理性参与⼈

A

X

x : A → X v = u ∘ x a
v(a) = u(x(a)) v
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例题：⽔果和糖

• ⼀家⼩卖店以0.5元/根的价格出售⾹蕉，同时以0.25元/颗的价格出售糖 

• 你可以将吃⾹蕉和糖带来的满⾜感换算成货币价值（即⽀付函数） 

- 吃第⼀根⾹蕉的收益是1.2元，此后每多吃⼀根，收益都是前⼀根的⼀半 

- 吃第⼀颗糖的收益是0.4元，此后每多吃⼀颗，收益都是前⼀颗的⼀半 

• 从吃⾹蕉和吃糖获得的收益互不影响（没有外部性） 

问题： 

1. 假设你身上只有1.25元，你的⾏动集是什么？ 

2. 画出你的决策树 

3. 你应当花掉所有的钱吗？
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不确定性与时间



彩票
Lottery

• 彩票（lottery）是表达随机收益的⼀种⽅式 

- 设想⼀个初创公司正⾯临着是否要扩⼤规模的决策，其⾏动集是  

- 结果有两种，成功可以带来的利润为10，失败带来的利润为0，因此结果集是  

- 和以往不同的是，⾏动和结果之间没有确定的关系：如果选择 ，则成功的概率是0.75；如果
选择 ，则成功的概率为0.5 

- 参与⼈实质上是在  和  两个彩票间进⾏选择 

• 为了⽅便讨论，我们将彩票的结果当做 
另⼀个参与⼈“⾃然”（Nature）做出的决策 
 
 

A = {g = 扩⼤, s = 维持现状}

X = {0,10}

g
s

g s
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2.1 Risk, Nature, and Random Outcomes . 15

there is uncertainty about which outcome will prevail, and the uncertainty is tied to
the choice made by the player, the division manager.

In order to capture this uncertainty in a precise way, we will use the well-
understood notion of randomness, or risk, as described by a random variable. Use of
random variables is the common way to precisely and consistently describe random
prospects in mathematics and statistics. We will not use the most formal mathematical
representation of a random variable but instead present it in its most useful depiction
for the problems we will address. Section 19.4 of the mathematical appendix has a
short introduction to random variables that you can refer to if this notion is completely
new to you. Be sure to make yourself familiar with the concept: it will accompany us
closely throughout this book.

2.1.1 Finite Outcomes and Simple Lotteries

Continuing with the R&D example, imagine that a successful product line is more
likely to be created if the player chooses to go ahead with the R&D project, while
it is less likely to be created if he does not. More precisely, the odds are 3 to 1 that
success happens if g is chosen, while the odds are only 50-50 if s is chosen. Using the
language of probabilities, we have the following description of outcomes following
actions: If the player chooses g then the probability of a payoff of 10 is 0.75 and
the probability of a payoff of 0 is 0.25. If, however, the player chooses s then the
probability of a payoff of 10 is 0.5, as is the probability of a payoff of 0.

We can therefore think of the player as if he is choosing between two lotteries. A
lottery is exactly described by a random payoff. For example, the state lottery offers
each player either several million dollars or zero, and the likelihood of getting zero
is extremely high. In our example, the choice of g is like choosing a lottery that pays
zero with probability 0.25 and pays 10 with probability 0.75. The choice of s is like
choosing a lottery that pays either zero or 10, each with an equal probability of 0.5.

It is useful to think of these lotteries as choices of another player that we will call
“Nature.” The probabilities of outcomes that Nature chooses depend on the actions
chosen by our decision-making player. In other words, Nature chooses a probability
distribution over the outcomes, and the probability distribution is conditional on the
action chosen by our decision-making player.

We can utilize a decision tree to describe the player’s decision problem that
includes uncertainty. The R&D example is described in Figure 2.1. First the player
takes an action, either g or s. Then, conditional on the action chosen by the player,
Nature (denoted by N ) will choose a probability distribution over the outcomes 10 and
0. The branches of the player are denoted by his actions, and the branches of Nature’s

10N

g

s

0.75

0.25

0.5

0.5N

0

10

0

Player

FIGURE 2.1 The R&D decision problem.
⾃然的


决策节点



彩票
Lottery

结果集  上的简单彩票（simple lottery）是⼀个概率分布
，其中  是  发⽣的概率 

• 简单彩票是最终结果上的概率分布，然⽽，有时不确定性不只发⽣在最终结果上，也有可能
发⽣在决策过程中，为了对应这种情况，我们将不同彩票上的概率分布（即彩票的彩票）称
为复合彩票（compound lottery） 

- 假设初创公司扩⼤规模的结果分为两个层⾯： 

• 扩张本身是否成功：成功概率为0.625 

• 扩张后的经营是否成功： 
 

如果扩张成功，则经营成功的概率为0.9 
如果扩张失败，则经营成功的概率为0.5 

• 连续结果集上的简单彩票是⼀个连续分布的 
累积分布函数（CDF）

X = {x1, x2, …, xn}
p = (p(x1), p(x2), …, p(xn)) p(xk) ≥ 0 xk

F(x)
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FIGURE 2.2 The modified R&D decision problem.

It seems like the two decision problems in Figures 2.1 and 2.2 are of different
natures (no pun intended). Then again, let’s consider what a decision problem ought
to be about: actions, distributions over outcomes, and preferences. It is apparent
that the player’s choice of s in both Figure 2.1 and Figure 2.2 leads to the same
distribution over outcomes. What about the choice of g? In Figure 2.2 this is followed
by two random stages. However, the outcomes are still either 10 or 0. What are the
probabilities of each outcome?

There are two ways that 10 can be obtained after the choice of g: First, with
probability 0.625 the R&D project succeeds, and then with probability 0.9 the payoff
10 will be obtained. Hence the probability of “R&D success followed by 10” is equal
to 0.625 × 0.9 = 0.5625. Second, with probability 0.375 the R&D project fails, and
then with probability 0.5 the payoff 10 will be obtained. Hence the probability of
“R&D failure followed by 10” is equal to 0.375 × 0.5 = 0.1875. Thus if the player
chooses g then the probability of obtaining 10 is just the sum of the probabilities
of these two exclusive events, which equals 0.5625 + 0.1875 = 0.75. It follows that
if the player chooses g then the probability of obtaining a payoff of 0 is 0.25, the
complement of the probability of obtaining 10 (you should check this).

What then is the difference between the two decision problems? The first, simpler,
R&D problem has a simple lottery following the choice of g. The second, more
complex, problem has a simple lottery over simple lotteries following the choice of g.
We call such lotteries over lotteries compound lotteries. Despite this difference, we
impose on the player a rather natural sense of rationality. In his eyes the two decision
problems are the same: he has the same set of actions, each one resulting in the same
probability distributions over final outcomes. This innocuous assumption will make
it easier for the player to evaluate and compare the benefits from different lotteries
over outcomes.

2.1.3 Lotteries over Continuous Outcomes

Before moving on to describe how the player will evaluate lotteries over outcomes,
we will go a step further to describe random variables, or lotteries, over continuous-
outcome sets. To start, consider the following example. You are growing 10 tomato
vines in your backyard, and your crop, measured in pounds, will depend on two inputs.
The first is how much you water your garden per day and the second is the weather.
Your action set can be any amount of water up to 50 gallons (50 gallons will completely

复合彩票



随机结果的评价

• 现在我们可以认为参与⼈对⾏为的选择实际上是在选择更好的彩票，⽽对彩票的评价应当基于收益的期望值 

如果  是  上的⽀付函数，  是  上的彩票，则  的期望收益是 
 

    

 

如果  是连续的，  是  上的彩票，且其密度函数是 ，则期望收益是  

• 带有扩张成本的决策问题 
 
     
 
 
 
    

u(x) X = {x1, x2, …, xn} p = {p1, p2, …, pn} X p

E[u(x) ∣ p] =
n

∑
k=1

pk u(xk)

X F(x) X f(x) E[u(x) ∣ F] = ∫x∈X
u(x) f(x) dx

v(g) = E[u(x) ∣ g] = 0.75 × 9 + 0.25 × (−1) = 6.5

v(s) = E[u(x) ∣ g] = 0.5 × 10 + 0.5 × 0 = 5

14

2.2 Evaluating Random Outcomes . 19

9N

g

s

0.75

0.25

0.5

0.5N

–1

10

0

Player

FIGURE 2.3 The R&D problem with costs.

Let’s consider a less obvious revision of the R&D problem, and imagine that there
is a real cost of pursuing the R&D project equivalent to 1. Hence the outcome of
success yields a profit of 9 instead of 10, and the outcome of failure yields a profit
of −1 instead of 0. This new problem is depicted in Figure 2.3. Now the comparison
is not as obvious: is it better to have a coin toss between 10 and 0, or to have a good
shot at 9, with some risk of losing 1?

2.2.1 Expected Payoff: The Finite Case

To our advantage, there is a well-developed methodology for evaluating how much
a lottery is worth for a player, how different lotteries compare to each other, and
how lotteries compare to “sure” payoffs (degenerate lotteries). This methodology,
called “expected utility theory,” was first developed by John von Neumann and Oskar
Morgenstern (1944), two of the founding fathers of game theory, and explored further
by Leonard Savage (1951). It turns out that there are some important assumptions that
make this method of evaluation valid. (The foundations that validate expected payoff
theory are beyond the scope of this text, and are rather technical in nature.)3

The intuitive idea is about averages. It is common for us to think of our actions
as sometimes putting us ahead and sometimes dealing us a blow. But if on average
things turn out on the positive side, then we view our actions as pretty good because
the gains will more than make up for the losses. We want to take this idea, with its
intuitive appeal, and use it in a precise way to tackle a single decision problem. To do
this we introduce the following definition:

Definition 2.3 Let u(x) be the player’s payoff function over outcomes in X =
{x1, x2, . . . , xn}, and let p = (p1, p2, . . . , pn) be a lottery over X such that pk =
Pr{x = xk}. Then we define the player’s expected payoff from the lottery p as

E[u(x)|p] =
n∑

k=1

pku(xk) = p1u(x1) + p2u(x2) + . . . + pnu(xn).

The idea of an expected payoff is naturally related to the intuitive idea of averages:
if we interpret a lottery as a list of “weights” on payoff values, so that numbers that
appear with higher probability have more weight, then the expected payoff of a lottery
is nothing other than the weighted average of payoffs for each realization of the lottery.

3. The key idea was introduced by von Neumann and Morgenstern (1944) and is based on the
“Independence Axiom.” A nice treatment of the subject appears in Kreps (1990a, Chapter 3).



⻛险态度
Risk attitude

• 当不存在不确定性时，参与⼈对具有相同收益的⾏动是⽆差异的 

• 当存在不确定性时，相同的期望收益却有可能伴随着不同的⻛险程度，因此也影响参与⼈的
选择 

- 考虑两个彩票  和 ，⽽收益是  

-  

-  

⼈们对确定性和不确定性的偏好称为⻛险态度（risk attitude） 

- ⻛险回避（risk averse）：如果期望收益相同，选择确定的彩票 

- ⻛险爱好（risk loving/seeking）：如果期望收益相同，选择不确定的彩票 

- ⻛险中⽴（risk neutral）：如果期望收益相同，认为确定和不确定的彩票是⽆差异的

p′ = ( 7
12 , 0, 5

12 ) p′ ′ = (0, 1, 0) (4, 9, 16)

v(p′ ) = 7
12 × 4+ 5

12 × 16 = 9

v(p′ ′ ) = 1 × 9 = 9
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你会选哪⼀个？



圣彼得堡悖论
St. Petersburg paradox

• 反复抛⼀枚公正的硬币（即出现正⾯的概率是0.5），直⾄出现反⾯为⽌ 

• 奖⾦池起初有 1 元钱，游戏每进⾏⼀轮，奖⾦池中的钱翻倍 

• 游戏在第⼀次出现反⾯时结束，你会获得奖⾦池中所有的钱 

• 你愿意为参加这个游戏付多少钱？ 
 
 
 
 
 
 

 E[u] =
∞

∑
k=1

1
2k

× 2k−1 =
∞

∑
k=1

1
2

= ∞

16

N N N N N N N（第  轮）k

1 2 4 8 16 32 2k−1

……

虽然期望收益⽆限，但没⼈愿意付很多钱去参加这个游戏

⼀种解释是多数⼈都是⻛险回避型，或者奖⾦的边际效⽤递减



不确定性下的理性决策

参与⼈的⽀付函数为  时，其基于期望收益选择最优⾏动的⽅式是理性的，即从所有的  中
选择 ，当且仅当 
 

    

• 假设你⼯作⼏年后考虑是否读⼀个 MBA，你的选择会影响你之后的收⼊，但读 MBA 有成本 
 
 
     
 
 
 
     
 

u(x) a ∈ A
a* ∈ A

v(a*) = E[u(x) ∣ a*] ≥ E[u(x) ∣ a] = v(a)

v(Get MBA) = 0.25 × 22 + 0.5 × 6 + 0.25 × 2 = 9

v(Dont't get MBA) = 0.25 × 12 + 0.5 × 8 + 0.25 × 4 = 8
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FIGURE 2.4 The MBA degree decision problem.

v(Get MBA) = 0.25 × 22 + 0.5 × 6 + 0.25 × 2 = 9

v(Don’t get MBA) = 0.25 × 12 + 0.5 × 8 + 0.25 × 4 = 8.

Thus we conclude that, given the parameters of the problem, it is worth getting the
MBA.

To illustrate the maximization of expected payoffs when there is a continuous
set of actions and outcomes, consider the following example, which builds on the
tomato growing problem from Section 2.2.2, with A = [0, 50], X = [0, 100] and the
distribution of x conditional on a is uniform given by x|a ∼ U [0, 2a]. We showed in
the example in Section 2.2.2 that if the player’s payoff from quantity x is given by
u(x) then his expected payoff from any choice a ∈ A is given by

v(a) = E[u(x)|a] = 1
2a

∫ 2a

0
u(x)dx.

To account for the cost of water, assume that choosing a ∈ A imposes a payoff cost of
2a (you can think of 2 being the cost of a gallon of water). Also assume that the payoff
value from quantity x is given by the function u(x) = 18

√
x. (The square root function

implies that the added value of every extra unit is less than the added value of the
previous unit because this function is concave.) Then the player wishes to maximize
his expected net payoff. This will be obtained by choosing the amount of water a that
maximizes the difference between the expected benefit from choosing some a ∈ A

(given by E[18
√

x|a]) and the actual cost of 2a. Thus the player’s mathematical
representation of the decision problem is given by

max
a∈[0,50]

1
2a

∫ 2a

0
18

√
xdx − 2a.

Solving for the integral, this is equivalent to maximizing the objective function
12

√
2a − 2a. Differentiating this gives us the first-order condition for finding an

optimum, which is

12√
2a

− 2 = 0,

⾃然选择就业市场⾏情



多期决策问题

• 我们经常会遇到需要连续做出多次决策的情形，⽽后⾯的决策往往受到前⾯决策结果的影响 

• 我们继续初创公司的例⼦，并假设公司在知道扩张结果后，可以继续选择是否进⾏市场营销（  为营
销，  为不营销），此时的决策树变为 
 
 
 
 
 
 
 
 
 
 

m
d
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FIGURE 2.5 The R&D problem with a marketing phase.

Effectively we can throw away all the branches that follow the decision nodes of
Group 1 and, assuming rationality, associate these nodes with the expected payoff
from acting optimally. We can continue this process “backward” through the tree
until we cover all the decision nodes of the player.

We can use the decision problem in Figure 2.5 to illustrate this procedure. First,
we can compute the expected payoff of the player from choices m and d at the node
after it has been determined by Nature that the R&D project was a success. We have

E[u(x)|R&D succeeds and m] = 0.9 × (20 − 6) + 0.1 × (−6) = 12

E[u(x)|R&D succeeds and d] = 0.9 × 10 + 0.1 × 0 = 9,

which implies that at this node the player will choose m in anticipation of an expected
payoff of 12. Now consider his same choice problem at the node after it has been
determined by Nature that the R&D project was a failure. We have

E[u(x)|R&D fails and m] = 0.5 × (20 − 6) + 0.5 × (−6) = 4

E[u(x)|R&D fails and d] = 0.5 × 10 + 0.5 × 0 = 5,

which implies that at this node the player will choose D in anticipation of an expected
payoff of 5.

Imposing these rational decisions in the Group 1 nodes allows us to rewrite the
decision tree as a simpler tree that already folds in the optimal decisions of the player
at the Group 1 nodes. This “reduced” decision tree is depicted in Figure 2.6. The
player’s choice at the beginning of the tree is now easy to analyze. Taking into account
his optimal actions after the R&D project’s fate is determined, his expected payoff
from choosing g is

v(g) = 0.625 × 12 + 0.375 × 5 = 9.375.

在这个决策问题中，参与⼈有两次选择⾏为的机会

1. 选择是否扩张 

2. 在选择扩张  并确定结果后，选择是否进⾏市场营销  

⾃然也有两次决策的机会

i. 在参与⼈选择  后，决定扩张是否成功

ii. 在参与⼈做出其他决策后，决定公司经营是否成功


在多期决策问题中，我们假设

• 参与⼈在每⼀阶段都是理性的

• 决策⽅式被称为动态规划（dynamic programming） 

或逆向归纳（backward induction），即参与⼈在每个决策阶段 
都对后⾯可能发⽣的事进⾏预测，并做出理性选择

{g, s}
g {m, d}

g
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FIGURE 2.5 The R&D problem with a marketing phase.

Effectively we can throw away all the branches that follow the decision nodes of
Group 1 and, assuming rationality, associate these nodes with the expected payoff
from acting optimally. We can continue this process “backward” through the tree
until we cover all the decision nodes of the player.

We can use the decision problem in Figure 2.5 to illustrate this procedure. First,
we can compute the expected payoff of the player from choices m and d at the node
after it has been determined by Nature that the R&D project was a success. We have

E[u(x)|R&D succeeds and m] = 0.9 × (20 − 6) + 0.1 × (−6) = 12

E[u(x)|R&D succeeds and d] = 0.9 × 10 + 0.1 × 0 = 9,

which implies that at this node the player will choose m in anticipation of an expected
payoff of 12. Now consider his same choice problem at the node after it has been
determined by Nature that the R&D project was a failure. We have

E[u(x)|R&D fails and m] = 0.5 × (20 − 6) + 0.5 × (−6) = 4

E[u(x)|R&D fails and d] = 0.5 × 10 + 0.5 × 0 = 5,

which implies that at this node the player will choose D in anticipation of an expected
payoff of 5.

Imposing these rational decisions in the Group 1 nodes allows us to rewrite the
decision tree as a simpler tree that already folds in the optimal decisions of the player
at the Group 1 nodes. This “reduced” decision tree is depicted in Figure 2.6. The
player’s choice at the beginning of the tree is now easy to analyze. Taking into account
his optimal actions after the R&D project’s fate is determined, his expected payoff
from choosing g is

v(g) = 0.625 × 12 + 0.375 × 5 = 9.375.

v(m ∣ 扩张成功) = 0.9 × 14 + 0.1 × (−6) = 12

v(d ∣ 扩张成功) = 0.9 × 10 + 0.1 × 0 = 9

v(d ∣ 扩张失败) = 0.5 × 10 + 0.5 × 0 = 5

v(m ∣ 扩张失败) = 0.5 × 14 + 0.5 × (−6) = 4

28 . Chapter 2 Introducing Uncertainty and Time
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FIGURE 2.6 The marketing staged reduction of the R&D problem.

Because his expected payoff from choosing s is 5, it is clear that, anticipating his
future decisions, his first decision should be to choose g.

2.4.2 Discounting Future Payoffs

In the R&D example as we have analyzed it so far, a player treated his costs and
benefits equally. That is, even though the costs of the R&D project were incurred at
the beginning, and the benefits came some (unspecified) time later, a dollar “today”
was worth a dollar “tomorrow.” However, this is often not the way current and future
payments are evaluated. The convention in decision analysis is to discount future
payoffs so that a dollar tomorrow is worth less than a dollar today.

For those who have had some experience with finance, the motivation for dis-
counting future financial payoffs is simple. Imagine that you can invest money today
in an interest-bearing savings account that yields 2% interest a year. If you invest $100
today then you can receive $100 × 1.02 = $102 in a year, $100 × (1.02)2 = $104.04
in two years, and similarly $100 × (1.02)t in t years. As we can see, any amount today
will be worth more and more in nominal terms as we move further into the future. As
a consequence, the opposite should be true: any amount $x that is expected in t years
will be worth $v = x

(1.02)t
today precisely because we need only to invest $v today in

order to get $x in t years. More generally, if the interest rate is r% per period, then any
amount $x that is received in t periods is discounted and is worth only x

(1+r)t
today.

Another motivation for discounting future payoffs is uncertainty over the future
coupled with expected future values. Most people are quite certain that they will be
alive and well a year from today. That said, there is always that small chance that
one’s future may be cut short due to illness or accident. (This is the reason that life
insurance companies use actuarial tables.) Imagine that a player assesses that with
probability δ ∈ (0, 1) he will be alive and well in one period (a year, a month, and
so forth), while with probability 1 − δ he will not. This implies that if he is offered
a payoff of x in one period then his expected utility is v = δx + (1 − δ)0 = δx < x.
Similarly, if he is promised a payoff of x in t periods, then he would be willing to
trade that promise for a payoff of v = δtx today.

More generally, if a player expects to receive a stream of payments x1, x2, . . . , xT

over the periods t = 1, 2, . . . , T , and he evaluates payments with the utility function

v(g) = 0.625 × 12 + 0.375 × 5 = 9.375

v(s) = 5 × 10 + 0.5 × 0 = 5



信息的价值

• 如果在你决定是否读 MBA 之前，有⼀个先知可以有偿地告诉你毕业后的就业形势，那
么你愿意为这个预⾔付多少钱呢？
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v(Get MBA) = 0.25 × 22 + 0.5 × 6 + 0.25 × 2 = 9

v(Don’t get MBA) = 0.25 × 12 + 0.5 × 8 + 0.25 × 4 = 8.

Thus we conclude that, given the parameters of the problem, it is worth getting the
MBA.

To illustrate the maximization of expected payoffs when there is a continuous
set of actions and outcomes, consider the following example, which builds on the
tomato growing problem from Section 2.2.2, with A = [0, 50], X = [0, 100] and the
distribution of x conditional on a is uniform given by x|a ∼ U [0, 2a]. We showed in
the example in Section 2.2.2 that if the player’s payoff from quantity x is given by
u(x) then his expected payoff from any choice a ∈ A is given by

v(a) = E[u(x)|a] = 1
2a

∫ 2a

0
u(x)dx.

To account for the cost of water, assume that choosing a ∈ A imposes a payoff cost of
2a (you can think of 2 being the cost of a gallon of water). Also assume that the payoff
value from quantity x is given by the function u(x) = 18

√
x. (The square root function

implies that the added value of every extra unit is less than the added value of the
previous unit because this function is concave.) Then the player wishes to maximize
his expected net payoff. This will be obtained by choosing the amount of water a that
maximizes the difference between the expected benefit from choosing some a ∈ A

(given by E[18
√

x|a]) and the actual cost of 2a. Thus the player’s mathematical
representation of the decision problem is given by

max
a∈[0,50]

1
2a

∫ 2a

0
18

√
xdx − 2a.

Solving for the integral, this is equivalent to maximizing the objective function
12

√
2a − 2a. Differentiating this gives us the first-order condition for finding an

optimum, which is

12√
2a

− 2 = 0,

在原来的决策问题，你会选择读 MBA，其期望收益是 9
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FIGURE 2.8 The MBA decision problem with the oracle’s information.

course, this approach assumes that the player knows exactly what kind of information
he can receive, how each piece of information will affect his payoffs, and what are the
probabilities that each event will happen. Despite relying on a very demanding set of
assumptions, this approach is valuable in offering a framework for decision making
and valuing information.

2.5.2 Discounted Future Consumption

Usually we receive income or monetary gifts every so often, but we need to consume
over several periods of time in between these income events. For example, you may
receive a paycheck every month, but after paying your monthly costs, like rent and
utilities, you need to buy groceries every week. If you spend too much during the
first week, you may go hungry toward the end of the month. This kind of problem is
known as choosing consumption over time.

Imagine a player who has $K today that need to be consumed over the next two
periods, t = 1, 2. The utility over consuming $x in any period is given by the concave
utility function u(x), with u′(x) > 0 and u′′(x) < 0. At period t = 1, the player values
his utility from consuming x2 in period t = 2 at the discounted value of δu(x2), so
that at period t = 1 the player maximizes his present value of utility given by

max
x1

u(x1) + δu(K − x1),

and the player’s first-order condition is therefore6

u′(x1) = δu′(K − x1). (2.1)

6. Because u(.) is concave, the second-order condition (that the second derivative be zero) is satisfied,
implying that the solution to the first-order condition is the maximum.

新的决策问题：

在知道就业形势后，你会做出不同的选择

⽽听预⾔带来的期望收益是 
 




因此，预⾔的价值是 

E[u] = 0.25 × 22 + 0.5 × 8 + 0.25 × 4 = 10.5

10.5 − 9 = 1.5

先知预⾔就业形势

的概率分布



例题：赛狗

• 假设你去美国的拉斯维加斯旅游，并有机会观看⼀场赛狗⽐赛 

• 在参赛⽝中，有⼀只拉布拉多和⼀只边牧引起了你的关注 

- 下注拉布拉多需要 1 美元，如果获胜你会获得 2 美元 

- 下注边牧也需要 1 美元，如果获胜你会获得 11 美元 

• 从赛前信息你了解到，拉布拉多获胜的概率是 0.7，⽽边牧获胜的概率是 0.1 

• 你对其他的参赛⽝不感兴趣 

• 你可以选择不下注，或者下注两只狗中的⼀只。你的⽬的是赢更多的钱 

问题： 

1. 画出这个问题的决策树 

2. 你的最佳决策是什么？你的最⼤期望收益是多少？ 

3. 如果决定下注，你有机会加⼊“反向保险”，即赛前你收到 2 美元，⽽赛后你需要交出赢的钱的⼀半。你可以选择接受
或者不接受这个反向保险。画出新的决策树并找到最优⾏动
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例题：存钱还是花钱

• 假设你现在有100元，你需要决定如何在三天内（ ）将它花掉 

• 你在第  天花的钱记作 ，消费带来的效⽤是 ，未来效⽤的折现因⼦是 
，因此消费计划  的效⽤现值是  

问题： 

1. 你会怎样分配这100元？ 

2. 如果明天（ ）你会另外收到20元，你会怎样分配初始的100元和额外的20元？

t = 1, 2, 3

t xt u(x) = ln x
δ = 0.9 (x1, x2, x3) u(x1) + δu(x2) + δ2u(x33)

t = 2
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