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序贯理性



不可信的威胁
Incredible threat

• 序贯⾏动 BoS 有三个纯策略纳什均衡： 
, , (O, oo) (O, of ) (F, ff )

3

Sequential-move BoS
参与⼈ 2

oo of fo ff

参与⼈ 1
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FIGURE 7.2 The sequential-move Battle of the Sexes game.

players.) The sequence of choices will result in one of the outcomes at the bottom
of the tree. However, how can we distinguish between the sequential case in which
player 2 knows the move of player 1 and the simultaneous case in which player 2
moves after player 1 but is ignorant about player 1’s move?

To address this concern formally, and to complete the structure of a game tree,
a certain amount of detail and notation needs to be introduced.1 This is the main
objective of this section; later, once the concepts are clear, we will focus our efforts
on a variety of examples to master the use of game trees.

Definition 7.1 A game tree is a set of nodes x ∈ X with a precedence relation x > x′,
which means “x precedes x′.” Every node in a game tree has only one predecessor. The
precedence relation is transitive (x > x′, x′ > x′′ ⇒ x > x′′), asymmetric (x > x′ ⇒
not x′ > x), and incomplete (not every pair of nodes x, y can be ordered). There is a
special node called the root of the tree, denoted by x0, that precedes any other x ∈ X.
Nodes that do not precede other nodes are called terminal nodes, denoted by the set
Z ⊂ X. Terminal nodes denote the final outcomes of the game with which payoffs
are associated. Every node x that is not a terminal node is assigned either to a player,
i (x), with the action set Ai(x), or to Nature.

This definition is quite a mouthful, but it formally captures the “physical” structure
of a game tree, ignoring the actions of players and what they know when they move.
To illustrate the definition, look back at the Battle of the Sexes game in Figure 7.2.
x0 is where the game begins, and x0 precedes both x1 and x2. Each of these nodes
precedes two terminal nodes, each describing a different outcome of the game. Since
the terminal nodes are the game’s outcomes, payoffs to the two players are noted at
the terminal nodes.

Another example is given in Figure 7.3. In this game we have payoffs for four
players, N = {1, 2, 3, 4}, but only players 1, 2, and 4 have actual moves. Hence we can
think of player 3 as a “dummy player.” The terminal nodes are Z = {x4, x5, x6, x7, x8},
and payoffs are defined over terminal nodes: vi : Z → R, where vi(z) is i’s payoff if
terminal node z ∈ Z is reached. For example, if node x5 is reached, then player 2 gets
v2(x5) = 7 and player 4 gets v4(x5) = −5.

1. I borrow heavily from the notation in Fudenberg and Tirole (1991). This approach will serve the
reader who is interested in learning about their more advanced treatment of the subject, and I hope
it will not deter the reader who is not.
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序贯理性
Sequential rationality

• 如果参与⼈在⾃⼰的每⼀个信息集都做出最优选择，则称之为满⾜序贯理性
（sequentially rational） 
 
序贯理性的常⽤定义出现在第15章。第8章中的定义8.1不准确 

• 在序贯⾏动 BoS 中，只有  中的策略满⾜序贯理性： 

- 参与⼈ 2 在  时，  是最优⾏动；在  时，  是最优⾏动 

- 参与⼈ 1 可以预⻅参与⼈ 2 的策略 ，因此  是它的最优反应 

• 满⾜序贯理性的纳什均衡不仅能预测均衡路径上的⾏动， 
也可以预测均衡路径外的⾏动

(O, of )
x1 o x2 f

of O
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逆向归纳解
Backward induction solution

• 在扩展式博弈中，逆向归纳法意味着： 

1. 在每个终点前⾯的节点上，参与⼈都选择最优⾏动 

2. 在更前⾯的节点上，参与⼈都能预⻅后⾯的最优⾏动，并选择最优反应 

• 任意的有限完美信息博弈都存在逆向归纳解，且满⾜序贯理性。如果对任意参与⼈  ，
博弈树的所有终点都对应不同的回报，则逆向归纳解是唯⼀的 

• 任意的有限完美信息博弈的逆向归纳解都是纳什均衡，因此有限完美信息博弈⼀定存在
纯策略纳什均衡。如果对任意参与⼈  ，博弈树的所有终点都对应不同的回报，则满⾜
序贯理性的纯策略纳什均衡是唯⼀的

i

i

5



逆向归纳法的适⽤范围

• 考虑右图中的⾃愿 BoS 博弈： 

- 参与⼈ 1 ⾸先选择是否进⾏ BoS 博弈 

- 如果参与⼈ 1 选择不进⾏（ ），则双⽅的回报为  

- 如果参与⼈ 1 选择进⾏（ ），则双⽅进⾏同时⾏动 BoS 

• 这个博弈⽆法适⽤逆向归纳法，因为参与⼈ 2 的信息集 
不是单点，不存在最优纯策略 

• 逆向归纳法不适⽤的博弈包括： 

- 不完美信息博弈（任意信息集包含两个或以上节点，或有“⾃然”参与） 

- ⽆法确保在有限回合结束的博弈（可能存在⽆限多个终点）

N (1.5, 1.5)

Y
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perfect information. Things become a bit trickier when we try to expand our reach to
suggest solutions for games of imperfect information, in which backward induction
as previously defined encounters some serious problems.

Consider, for example, a game in which player 1 decides whether or not to
play a Battle of the Sexes game with player 2. He can decide yes (Y ), in which case
they play a simultaneous-move Battle of the Sexes game, or no (N ), in which case both
players get a payoff of 1.5. The game is described in Figure 8.2. To try to solve this
game using backward induction we need to first identify the set of “last players” that
precede terminal nodes and then choose actions that would maximize their payoff
at this stage. In this game, however, this is not possible, because player 2 has an
information set before the terminal nodes that is not a singleton. His best response is
therefore not well defined without assigning a belief to this player about what player 1
actually chose to do, and these beliefs are not part of the backward induction process.

This example shows that backward induction cannot be applied to games of
imperfect information. Interestingly there is another important class of games for
which we cannot apply the procedure of backward induction, and these are games
that do not necessarily end in finite time. Intuitively games that do not necessarily end
in a finite number of moves may not have a finite set of terminal nodes, and without
such a set we cannot begin the backward induction procedure. At first thought such
games may seem a bit bizarre—what kind of game will never end? As we will see in
Chapters 10 and 11, such games not only are interesting in their own right but also
will offer critical ways to model realistic situations. Hence our goal is to find a natural
way in which to extend the concept of sequential rationality to games of imperfect
information and to games that have an infinite sequence of moves.

Let’s start with the problem posed by imperfect information. For example, the
problem we encountered in the game depicted in Figure 8.2 is that the best response
of player 2 in his information set depends on the node where he is, or on his beliefs
about where he is in the information set. This of course depends on the action of
player 1, which in turn depends on what player 1 believes that player 2 will do. Thus
it seems that sequential rationality will have to cope with both of these decisions being
interdependent. For this reason we advance the following definition:

Definition 8.2 A proper subgame G of an extensive-form game ! consists of only
a single node and all its successors in ! with the property that if x ∈ G and x′ ∈ h(x)



⼦博弈
Subgame

由扩展式博弈  中的单个节点及其所有下⾏节点组成的部分博弈树  如果满⾜ 
 

 ,           （  在  所在的信息集中，则  也在  中） 
 

则称  为  的⼦博弈（subgame 或 proper subgame）

Γ G

x ∈ G x′ ∈ h(x) ⇒ x′ ∈ G x′ x x′ G

G Γ

7
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then x′ ∈ G. The subgame G is itself a game tree with its information sets and payoffs
inherited from !.

The idea of a proper subgame (which we will often just call a subgame) is simple
and allows us to “dissect” an extensive-form game into a sequence of smaller games,
an approach that in turn will allow us to apply the concept of sequential rationality to
games of imperfect information. To be able to do this, however, we will require that
every such smaller game be an extensive-form game in its own right, which means that
it must have a unique root and follow the structure that we defined in Section 7.1.1.

In every game of perfect information, every node is a singleton and hence can be
a root of a subgame. This implies that in games of perfect information every node,
together with all the nodes that succeed it, forms a proper subgame. As an example,
consider the game depicted in Figure 8.3. The two “smallest” subgames start at nodes
x2 and x3. A“larger” subgame starts at x1, and it includes the two subgames that start
at x2 and x3. Finally the “largest” subgame starts at the original game’s root, x0, and
includes all the other subgames.

Now let’s return to the voluntary Battle of the Sexes game depicted again in
Figure 8.4. There are only two proper subgames in this game: the whole game (which
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• 双⼈参与的⽐⼤⼩游戏 

- ⼀副扑克牌中仅包含同等数量的  和  

- 游戏开始前，两个玩家各下注 1 元 

- 玩家 1 抽⼀张牌，并在看到牌⾯后 
选择： 

• 结束（ ）：玩家 2 赢得 2 元 

• 继续（ ）：玩家 2 ⾏动 

- 玩家 2 ⽆法看到玩家 1 的牌， 
他可以选择： 

• 放弃（ ）：玩家 1 赢得 2 元 

• 跟注（ ）： 
每个玩家各⾃再加注 1 元并翻牌， 
如果牌⾯是  则玩家 2 赢得 4 元， 
如果是  则玩家 1 赢得 4 元

K A

N

Y

F

C

K
A
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is always, by definition, a proper subgame) and the subgame starting at the node x1.
The reason these are the only two subgames follows from definition 8.2. Note that x2
and x3 cannot be roots of a subgame because they belong to the same information set.
From definition 8.2, if x2 belongs to a subgame then x3 must belong to that subgame
too. In addition, from the definition we know that any subgame must begin with
a single node, and thus the information set that contains x2 and x3 cannot begin a
subgame. Hence, aside from the whole game, the only other proper subgame starts
at x1.

Another interesting example appears in Figure 8.5, which describes the following
game. Players 1 and 2 put a dollar each in a pot, and player 1 pulls a card out of a
deck of kings and aces, with an equal probability of getting a king (K) or an ace (A).
Player 1 observes his card and then decides whether not to play the game (N ), and
forfeit his dollar to player 2, or proceed with the game (Y ). If player 1 proceeds with
the game, then without knowing which card player 1 drew (hence the information set
denoted by the dashed line) player 2 can fold (F ) and forfeit his dollar to player 1 or
call (C), in which case each player must add another dollar to the pot. After this, if
player 1 has a king then player 2 wins the pot, while if player 1 has an ace then player
1 wins the pot.

Now ask yourself: what are the proper subgames of this game? Clearly neither
x3 nor x4 can be a root of a subgame because they belong to the same information
set. Can x1 be the root of a subgame? If it could be then x3 must be in its subgame
because x1 precedes x3. But by definition, if x3 is in the subgame then x4 ∈ h(x3), and
therefore it too should be in the subgame (as well as all the relevant terminal nodes
that follow after x1, x3, and x4). But this would not be a proper subgame because x1
does not precede x4. A similar argument implies that x2 cannot be the root of the
subgame. We conclude that for this card game the only proper subgame is the whole
game.

By now you may have realized why a subgame, which is a stand-alone game
within the whole game, will prove to be useful to apply the concept of sequential
rationality to extensive-form games. In particular, at any node or information set
within a subgame G, a player’s best response depends only on his beliefs about what
the other players are doing within the subgame G, and not at nodes that are outside the
subgame.

唯⼀⼦博弈是原博弈⾃身



⼦博弈完美纳什均衡
Subgame-perfect Nash equilibrium

• 泽尔腾（Reinhard Selten）在 1975 年提出了⼦博弈完美纳什均衡的概念，并于 1994 年和海撒尼
（John C. Harsanyi）、纳什（John F. Nash Jr.）⼀起获得诺⻉尔经济学奖，获奖理由为“对⾮合
作博弈的均衡分析的开创性贡献” 

令  为  ⼈扩展式博弈。如果⾏为策略  在  的任意⼦博弈  上都是纳什均衡，
则称  为⼦博弈完美（纳什）均衡（subgame-perfect (Nash) equilibrium），可简写为 SPE 

• SPE 要求均衡策略在那些偏离了均衡路径的⼦博弈上也要是纳什均衡 

• 对于有限完美信息博弈，纯策略 SPE 等价于逆向归纳纳什均衡 

• SPE 将纳什均衡的集合缩⼩了，因此称之为纳什均衡的⼀种精炼（refinement） 

定理（Selten）：任意有限完美回忆博弈都存在⼦博弈完美均衡

Γ n σ* = (σ*1 , σ*2 , …, σ*n ) Γ G
σ*

9



• 纯策略纳什均衡为： 
, ,  

• 其中 SPE 为： 
, 

(YO, o) (NO, f ) (NF, f )

(YO, o) (NF, f )
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perfect information. Things become a bit trickier when we try to expand our reach to
suggest solutions for games of imperfect information, in which backward induction
as previously defined encounters some serious problems.

Consider, for example, a game in which player 1 decides whether or not to
play a Battle of the Sexes game with player 2. He can decide yes (Y ), in which case
they play a simultaneous-move Battle of the Sexes game, or no (N ), in which case both
players get a payoff of 1.5. The game is described in Figure 8.2. To try to solve this
game using backward induction we need to first identify the set of “last players” that
precede terminal nodes and then choose actions that would maximize their payoff
at this stage. In this game, however, this is not possible, because player 2 has an
information set before the terminal nodes that is not a singleton. His best response is
therefore not well defined without assigning a belief to this player about what player 1
actually chose to do, and these beliefs are not part of the backward induction process.

This example shows that backward induction cannot be applied to games of
imperfect information. Interestingly there is another important class of games for
which we cannot apply the procedure of backward induction, and these are games
that do not necessarily end in finite time. Intuitively games that do not necessarily end
in a finite number of moves may not have a finite set of terminal nodes, and without
such a set we cannot begin the backward induction procedure. At first thought such
games may seem a bit bizarre—what kind of game will never end? As we will see in
Chapters 10 and 11, such games not only are interesting in their own right but also
will offer critical ways to model realistic situations. Hence our goal is to find a natural
way in which to extend the concept of sequential rationality to games of imperfect
information and to games that have an infinite sequence of moves.

Let’s start with the problem posed by imperfect information. For example, the
problem we encountered in the game depicted in Figure 8.2 is that the best response
of player 2 in his information set depends on the node where he is, or on his beliefs
about where he is in the information set. This of course depends on the action of
player 1, which in turn depends on what player 1 believes that player 2 will do. Thus
it seems that sequential rationality will have to cope with both of these decisions being
interdependent. For this reason we advance the following definition:

Definition 8.2 A proper subgame G of an extensive-form game ! consists of only
a single node and all its successors in ! with the property that if x ∈ G and x′ ∈ h(x)

Voluntary BoS
参与⼈ 2

o f

参与⼈ 1

YO 2, 1 0, 0

YF 0, 0 1, 2

NO 1.5, 1.5 1.5, 1.5

NF 1.5, 1.5 1.5, 1.58.3 Subgame-Perfect Nash Equilibrium: Examples . 159
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FIGURE 8.7 Subgame-perfect equilibria in the voluntary Battle of the Sexes game.

8.3 Subgame-Perfect Nash Equilibrium: Examples

This section presents some well-known examples of games and their corresponding
subgame-perfect equilibria.

8.3.1 The Centipede Game

Consider the perfect-information game depicted in Figure 8.8. The game should be
read from left to right as follows: Player 1 can terminate the game immediately by
choosing N in his first information set or can continue by choosing C. Then player
2 faces the same choice (using lowercase letters for his choices), and if player 2
chooses to continue then the ball is back in player 1’s court, who again can terminate
or continue to player 2, at which stage player 2 concludes the game by choosing n or
c for the second time.

It would be nice for the players to be able to continue through the game to reach
the payoffs of (3, 3). However, backward induction indicates that this will not happen.
At his last information set, player 2 will choose n to get 4 instead of 3. Anticipating
this a step earlier, player 1 will choose N to get 2 instead of 1, and the logic follows
until player 1’s first information set, at which he will choose N and both players will
receive a payoff of 1.

Notice that this game has an interesting structure: as long as the players continue,
the sum of their payoffs goes up by 1. You can easily see that we can continue with the
payoffs in this way with (2, 5), (4, 4), (3, 6), . . . and make the payoff from reaching
the end of the game extremely large. Nevertheless the “curse of rationality,” so to
speak, predicts a unique outcome: at the last stage the last player will, by being selfish,

N n

C c C c

N n

1

(1, 1) (0, 3) (2, 2) (1, 4)

(3, 3)2 1 2

FIGURE 8.8 The Centipede Game.



蜈蚣博弈
The centipede game

• 如图所示，根据逆向归纳法， 

- 参与⼈ 2 在最终回合应当选择   

-  参与⼈ 1 在第三回合应当选择  

-  参与⼈ 2 在第⼆回合应当选择  

-  参与⼈ 1 在第⼀回合应当选择  

• 逆向归纳纳什均衡为 ，结果是参与⼈ 1 在第⼀回合选择 ，双⽅的回报为  

• 此博弈可以拓展为  回合，参与⼈ 1 在第  回合⾏动，如果选择  则回报为 ，如
果选择  则博弈继续；参与⼈ 2 在第  回合⾏动，如果选择  则回报为 ，如果
选择  则博弈继续，如果在最终回合选择  则回报为  

• 最终回合参与⼈ 2 选择  带来的回报是怕累托最优结果，且帕累托优于纳什均衡的结果 

n

⇒ N

⇒ n

⇒ N

(NN, nn) N (1, 1)

2k 2i − 1 N (i, i)
C 2i n (i − 1, i + 2)

c c (k + 1, k + 1)

c (1, 1)
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8.3 Subgame-Perfect Nash Equilibrium: Examples

This section presents some well-known examples of games and their corresponding
subgame-perfect equilibria.

8.3.1 The Centipede Game

Consider the perfect-information game depicted in Figure 8.8. The game should be
read from left to right as follows: Player 1 can terminate the game immediately by
choosing N in his first information set or can continue by choosing C. Then player
2 faces the same choice (using lowercase letters for his choices), and if player 2
chooses to continue then the ball is back in player 1’s court, who again can terminate
or continue to player 2, at which stage player 2 concludes the game by choosing n or
c for the second time.

It would be nice for the players to be able to continue through the game to reach
the payoffs of (3, 3). However, backward induction indicates that this will not happen.
At his last information set, player 2 will choose n to get 4 instead of 3. Anticipating
this a step earlier, player 1 will choose N to get 2 instead of 1, and the logic follows
until player 1’s first information set, at which he will choose N and both players will
receive a payoff of 1.

Notice that this game has an interesting structure: as long as the players continue,
the sum of their payoffs goes up by 1. You can easily see that we can continue with the
payoffs in this way with (2, 5), (4, 4), (3, 6), . . . and make the payoff from reaching
the end of the game extremely large. Nevertheless the “curse of rationality,” so to
speak, predicts a unique outcome: at the last stage the last player will, by being selfish,
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C c C c

N n

1

(1, 1) (0, 3) (2, 2) (1, 4)

(3, 3)2 1 2

FIGURE 8.8 The Centipede Game.



斯塔克尔伯格竞争模型
Stackelberg competition

• 斯塔克尔伯格竞争模型是古诺双寡头模型的序贯⾏动版 

• 需求函数 ，可变成本  

• 假设参与⼈ 1 ⾸先选择产量 ，参与⼈ 2 在观察到  后选择⾃⼰的产量  

• 逆向归纳解 

- 在已知  的情况下，参与⼈ 2 选择令利润  最⼤的 
产量 ，即  

- 参与⼈ 1 选择令利润  最⼤的产量 ，即  

-         回报为  

• 古诺模型下的纳什均衡为     回报为  
斯塔克尔伯格模型解释了先⾏者优势（first-mover advantage）

p = 100 − q1 − q2 c(qi) = 10qi

q1 q1 q2

q1 (100 − q1 − q2)q2 − 10q2
q2 q*2 = (90 − q1)/2

(100 − q1 − q*2 )q1 − 10q1 q1 q*1 = 45

⇒ q*2 = 22.5 ⇒ (1012.5, 506.25)

(q*1 , q*2 ) = (30, 30) ⇒ (900, 900)
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162 . Chapter 8 Credibility and Sequential Rationality

q1
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(100 – q1 – q2)q1 – 10q1

(100 – q1 – q2)q1 – 10q1

FIGURE 8.9 The Stackelberg duopoly game.

q1

q2

1

2

(100 – q1 – q2)q1 – 10q1

(100 – q1 – q2)q1 – 10q1

FIGURE 8.10 The Cournot duopoly game.

results in a proper subgame. Every choice q1 of player 1 is an information set for
player 2 that precedes an infinite number (a continuum) of terminal nodes associated
with the specific q1 together with player 2’s choice of q2. The payoff for player i is
(100 − q1 − q2)qi − 10qi.

Similarly we can heuristically depict the simultaneous-move Cournot game in
Figure 8.10. We draw player 2’s information set to include all the choices of q1 that
player 1 can make to try to describe the simultaneous nature of the Cournot game in
that player 2 makes its choice without observing the choice of player 1.

In the Cournot game we know from the analysis in Section 3.1.2 that q1 = q2 = 30
is the unique Nash equilibrium. Because every subgame-perfect equilibrium is a Nash
equilibrium, and because the whole game is the only unique proper subgame in the
Cournot example, then q1 = q2 = 30 is the unique subgame-perfect equilibrium in the
Cournot game.

An interesting question is whether the outcome q1 = q2 = 30 could be the outcome
of a Nash equilibrium in the Stackelberg game. The answer, perhaps surprisingly, is
yes. To see this consider the following strategies in the Stackelberg game: q1 = 30
and q2(q1) = 30 for any choice q1. These two strategies are mutual best responses,


(100 − q1 − q2)q1 − 10q1
(100 − q1 − q2)q2 − 10q2



斯塔克尔伯格竞争模型
Stackelberg competition

• 逆向归纳解也是 SPE 

• 注意：  不是 SPE 的正确写法，⽽应该写成 
 
   
 
因为对于参与⼈ 2，每⼀个可能的  都对应⼀个⼦博弈 

•  在斯塔克尔伯格模型中也是纳什均衡！ 

• 存在⽆限多个纳什均衡！例如， 
 

 ,   

(q1, q2) = (45, 22.5)

(q1, q2) = (45, 90 − q1

2 )

q1

(q1, q2) = (30, 30)

q1 = c ∈ [0, 90] q2 = {(90 − c)/2  if q1 = c
100  if q1 ≠ c

13
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FIGURE 8.10 The Cournot duopoly game.

results in a proper subgame. Every choice q1 of player 1 is an information set for
player 2 that precedes an infinite number (a continuum) of terminal nodes associated
with the specific q1 together with player 2’s choice of q2. The payoff for player i is
(100 − q1 − q2)qi − 10qi.

Similarly we can heuristically depict the simultaneous-move Cournot game in
Figure 8.10. We draw player 2’s information set to include all the choices of q1 that
player 1 can make to try to describe the simultaneous nature of the Cournot game in
that player 2 makes its choice without observing the choice of player 1.

In the Cournot game we know from the analysis in Section 3.1.2 that q1 = q2 = 30
is the unique Nash equilibrium. Because every subgame-perfect equilibrium is a Nash
equilibrium, and because the whole game is the only unique proper subgame in the
Cournot example, then q1 = q2 = 30 is the unique subgame-perfect equilibrium in the
Cournot game.

An interesting question is whether the outcome q1 = q2 = 30 could be the outcome
of a Nash equilibrium in the Stackelberg game. The answer, perhaps surprisingly, is
yes. To see this consider the following strategies in the Stackelberg game: q1 = 30
and q2(q1) = 30 for any choice q1. These two strategies are mutual best responses,


(100 − q1 − q2)q1 − 10q1
(100 − q1 − q2)q2 − 10q2

（确认  不是  的最优反应）q1 = 45 q2 = 22.5

（确认当  时，此策略是纳什均衡）c = 40



同归于尽博弈
Mutually assured destruction

• 假设两个国家间发⽣冲突，其中国家 2 ⾸先攻击了国家 1 

• 关于两国今后的策略选择可以考虑右图中的博弈： 

1. 国家 1 可以选择息事宁⼈  或备战   

2. 如果国家 1 选择备战，国家 2 可以选择让步 ， 
或进⼀步升级冲突   

3. 如果国家 2 选择升级冲突，则双⽅进⾏同时⾏动博弈 
国家 1 可以选择让步  或战争  
国家 2 可以选择让步  或战争  
 
如果双⽅都选择攻击，则会两败俱伤，给双⽅造成 
不可挽回的损失 

• 此博弈为⾮完美信息博弈

I E

B
N

R D
r d
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FIGURE 8.11 Mutually assured destruction.

status quo with payoffs (0, 0), or escalate the situation (E). Following escalation by
player 1, player 2 can back down (B), causing it to lose face and resulting in payoffs
of (10, −10), or it can choose to proceed to a nuclear confrontation (N ). Upon this
choice, the players play a simultaneous-move game in which they can either retreat
(R for player 1, r for player 2) or choose Doomsday (D for player 1, d for player 2), in
which the world is all but destroyed. If both call things off and retreat then they suffer
a small loss due to the mobilization process and payoffs are (−5, −5), while if either
party chooses Doomsday then the world destructs and payoffs are (−100, −100).

The extensive form of this game is depicted in Figure 8.11. Before solving for the
subgame-perfect equilibria, we begin by solving for the Nash equilibria. To do this it
is convenient to transform the extensive-form game into a normal-form game. Each
player has two information sets, each with two actions, implying that each player has
four pure strategies. Following our earlier convention, the strategy set for player 1 is
S1 = {IR, ID, ER, ED} and that for player 2 is S2 = {Br, Bd, Nr, Nd} (where IR

means that player 1 plays I in his first information set and R in his second one, and
the other strategies are defined similarly). The normal form can be represented by the
following matrix:

Player 2
Br Bd Nr Nd

IR 0, 0 0, 0 0, 0 0, 0

Player 1
ID 0, 0 0, 0 0, 0 0, 0

ER 10, −10 10, −10 −5, −5 −100, −100

ED 10, −10 10, −10 −100, −100 −100, −100

In this game there are six pure-strategy Nash equilibria, and these are the profiles in the
set ENash = {(IR, Nr), (IR, Nd), (ID, Nr), (ID, Nd), (ED, Br), (ED, Bd)}.
(We will ignore the mixed-strategy Nash equilibria in this example. There are too
many!)



同归于尽博弈
Mutually assured destruction

• ⾸先，我们尝试找出纯策略纳什均衡 
 
 
 
 
 
 
 
 
纯策略纳什均衡包括： , , ,  

, , 
(IR, Nr) (IR, Nd) (IR, Nr)

(ID, Nd) (ED, Br) (ED, Bd)
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status quo with payoffs (0, 0), or escalate the situation (E). Following escalation by
player 1, player 2 can back down (B), causing it to lose face and resulting in payoffs
of (10, −10), or it can choose to proceed to a nuclear confrontation (N ). Upon this
choice, the players play a simultaneous-move game in which they can either retreat
(R for player 1, r for player 2) or choose Doomsday (D for player 1, d for player 2), in
which the world is all but destroyed. If both call things off and retreat then they suffer
a small loss due to the mobilization process and payoffs are (−5, −5), while if either
party chooses Doomsday then the world destructs and payoffs are (−100, −100).

The extensive form of this game is depicted in Figure 8.11. Before solving for the
subgame-perfect equilibria, we begin by solving for the Nash equilibria. To do this it
is convenient to transform the extensive-form game into a normal-form game. Each
player has two information sets, each with two actions, implying that each player has
four pure strategies. Following our earlier convention, the strategy set for player 1 is
S1 = {IR, ID, ER, ED} and that for player 2 is S2 = {Br, Bd, Nr, Nd} (where IR

means that player 1 plays I in his first information set and R in his second one, and
the other strategies are defined similarly). The normal form can be represented by the
following matrix:

Player 2
Br Bd Nr Nd

IR 0, 0 0, 0 0, 0 0, 0

Player 1
ID 0, 0 0, 0 0, 0 0, 0

ER 10, −10 10, −10 −5, −5 −100, −100

ED 10, −10 10, −10 −100, −100 −100, −100

In this game there are six pure-strategy Nash equilibria, and these are the profiles in the
set ENash = {(IR, Nr), (IR, Nd), (ID, Nr), (ID, Nd), (ED, Br), (ED, Bd)}.
(We will ignore the mixed-strategy Nash equilibria in this example. There are too
many!)

国家 2
Br Bd Nr Nd

国家 1

IR 0, 0 0, 0 0, 0 0, 0

ID 0, 0 0, 0 0, 0 0, 0

ER 10, –10 10, –10 –5, –5 –100, –100

ED 10, –10 10, –10 –100, –100 –100, –100



同归于尽博弈
Mutually assured destruction

• 从纯策略纳什均衡 , , ,  
, ,  中找出⼦博弈完美均衡 

• 共有三个⼦博弈（如右图中所示） 

- ⼦博弈 A 的纳什均衡为： ,  

- ⼦博弈 B 和 C 中，双⽅可以考虑两种情形： 

1. 双⽅在⼦博弈 A 中选择均衡  

2. 双⽅在⼦博弈 A 中选择均衡 

(IR, Nr) (IR, Nd) (IR, Nr)
(ID, Nd) (ED, Br) (ED, Bd)

(R, r) (D, d)

(R, r)

(D, d)
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status quo with payoffs (0, 0), or escalate the situation (E). Following escalation by
player 1, player 2 can back down (B), causing it to lose face and resulting in payoffs
of (10, −10), or it can choose to proceed to a nuclear confrontation (N ). Upon this
choice, the players play a simultaneous-move game in which they can either retreat
(R for player 1, r for player 2) or choose Doomsday (D for player 1, d for player 2), in
which the world is all but destroyed. If both call things off and retreat then they suffer
a small loss due to the mobilization process and payoffs are (−5, −5), while if either
party chooses Doomsday then the world destructs and payoffs are (−100, −100).

The extensive form of this game is depicted in Figure 8.11. Before solving for the
subgame-perfect equilibria, we begin by solving for the Nash equilibria. To do this it
is convenient to transform the extensive-form game into a normal-form game. Each
player has two information sets, each with two actions, implying that each player has
four pure strategies. Following our earlier convention, the strategy set for player 1 is
S1 = {IR, ID, ER, ED} and that for player 2 is S2 = {Br, Bd, Nr, Nd} (where IR

means that player 1 plays I in his first information set and R in his second one, and
the other strategies are defined similarly). The normal form can be represented by the
following matrix:

Player 2
Br Bd Nr Nd

IR 0, 0 0, 0 0, 0 0, 0

Player 1
ID 0, 0 0, 0 0, 0 0, 0

ER 10, −10 10, −10 −5, −5 −100, −100

ED 10, −10 10, −10 −100, −100 −100, −100

In this game there are six pure-strategy Nash equilibria, and these are the profiles in the
set ENash = {(IR, Nr), (IR, Nd), (ID, Nr), (ID, Nd), (ED, Br), (ED, Bd)}.
(We will ignore the mixed-strategy Nash equilibria in this example. There are too
many!)

A
B

C
国家 2

r d

国家 1
R –5, –5 –100, –100

D –100, –100 –100, –100



同归于尽博弈
Mutually assured destruction

- ⼦博弈 B 和 C 中， 

1. 双⽅在⼦博弈 A 中选择均衡  
 

此时，国家 2 在⼦博弈 B 中的最优对应是 ， 
国家 1 在⼦博弈 C 中的最优对应是  

2. 双⽅在⼦博弈 A 中选择均衡  
 

此时，国家 2 在⼦博弈 B 中的最优对应是 ， 
国家 1 在⼦博弈 C 中的最优对应是  

• 因此，SPE 包括 ,  

•  的均衡路径为国家 1 在第⼀时间选择息事宁⼈ 

•  的均衡路径为国家 1 开始备战后，国家 2 预⻅ 
到同归于尽的结局，因此选择了让步并⽀付较少的赔偿

(R, r)

N
I

(D, d)

B
E

(IR, Nr) (ED, Bd)

(IR, Nr)

(ED, Bd)

17

164 . Chapter 8 Credibility and Sequential Rationality

R D

N B

r d

10
–10

2

1

r d

–100
–100

–100
–100

–100
–100

–5
–5

2

E I

0
0

1

FIGURE 8.11 Mutually assured destruction.

status quo with payoffs (0, 0), or escalate the situation (E). Following escalation by
player 1, player 2 can back down (B), causing it to lose face and resulting in payoffs
of (10, −10), or it can choose to proceed to a nuclear confrontation (N ). Upon this
choice, the players play a simultaneous-move game in which they can either retreat
(R for player 1, r for player 2) or choose Doomsday (D for player 1, d for player 2), in
which the world is all but destroyed. If both call things off and retreat then they suffer
a small loss due to the mobilization process and payoffs are (−5, −5), while if either
party chooses Doomsday then the world destructs and payoffs are (−100, −100).

The extensive form of this game is depicted in Figure 8.11. Before solving for the
subgame-perfect equilibria, we begin by solving for the Nash equilibria. To do this it
is convenient to transform the extensive-form game into a normal-form game. Each
player has two information sets, each with two actions, implying that each player has
four pure strategies. Following our earlier convention, the strategy set for player 1 is
S1 = {IR, ID, ER, ED} and that for player 2 is S2 = {Br, Bd, Nr, Nd} (where IR

means that player 1 plays I in his first information set and R in his second one, and
the other strategies are defined similarly). The normal form can be represented by the
following matrix:

Player 2
Br Bd Nr Nd

IR 0, 0 0, 0 0, 0 0, 0

Player 1
ID 0, 0 0, 0 0, 0 0, 0

ER 10, −10 10, −10 −5, −5 −100, −100

ED 10, −10 10, −10 −100, −100 −100, −100

In this game there are six pure-strategy Nash equilibria, and these are the profiles in the
set ENash = {(IR, Nr), (IR, Nd), (ID, Nr), (ID, Nd), (ED, Br), (ED, Bd)}.
(We will ignore the mixed-strategy Nash equilibria in this example. There are too
many!)

A

B

C



练习：混合策略 SPE

• 考虑⾃愿 BoS 博弈，并回答下列问题 

1. 找到所有的混合策略纳什均衡 

2. 找到唯⼀混合策略 SPE
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FIGURE 8.2 The voluntary Battle of the Sexes game.

perfect information. Things become a bit trickier when we try to expand our reach to
suggest solutions for games of imperfect information, in which backward induction
as previously defined encounters some serious problems.

Consider, for example, a game in which player 1 decides whether or not to
play a Battle of the Sexes game with player 2. He can decide yes (Y ), in which case
they play a simultaneous-move Battle of the Sexes game, or no (N ), in which case both
players get a payoff of 1.5. The game is described in Figure 8.2. To try to solve this
game using backward induction we need to first identify the set of “last players” that
precede terminal nodes and then choose actions that would maximize their payoff
at this stage. In this game, however, this is not possible, because player 2 has an
information set before the terminal nodes that is not a singleton. His best response is
therefore not well defined without assigning a belief to this player about what player 1
actually chose to do, and these beliefs are not part of the backward induction process.

This example shows that backward induction cannot be applied to games of
imperfect information. Interestingly there is another important class of games for
which we cannot apply the procedure of backward induction, and these are games
that do not necessarily end in finite time. Intuitively games that do not necessarily end
in a finite number of moves may not have a finite set of terminal nodes, and without
such a set we cannot begin the backward induction procedure. At first thought such
games may seem a bit bizarre—what kind of game will never end? As we will see in
Chapters 10 and 11, such games not only are interesting in their own right but also
will offer critical ways to model realistic situations. Hence our goal is to find a natural
way in which to extend the concept of sequential rationality to games of imperfect
information and to games that have an infinite sequence of moves.

Let’s start with the problem posed by imperfect information. For example, the
problem we encountered in the game depicted in Figure 8.2 is that the best response
of player 2 in his information set depends on the node where he is, or on his beliefs
about where he is in the information set. This of course depends on the action of
player 1, which in turn depends on what player 1 believes that player 2 will do. Thus
it seems that sequential rationality will have to cope with both of these decisions being
interdependent. For this reason we advance the following definition:

Definition 8.2 A proper subgame G of an extensive-form game ! consists of only
a single node and all its successors in ! with the property that if x ∈ G and x′ ∈ h(x)

Voluntary BoS
参与⼈ 2

o f

参与⼈ 1

YO 2, 1 0, 0

YF 0, 0 1, 2

NO 1.5, 1.5 1.5, 1.5

NF 1.5, 1.5 1.5, 1.5



• 混合策略纳什均衡 

- 对于参与⼈ 1，策略  严格劣于  和 ，因此可以将其剔除 

- 令参与⼈ 1 的策略为 ，参与⼈ 2 的策略为 ，则纳什均衡为 
,  ，其中前者为 ，后者包含  和  

- BoS ⼦博弈的混合策略纳什均衡为  

- 混合策略 SPE 为 ，或 

YF NO NF

(p, q, 1 − p − q) (s, 1 − s)
(p = 1, s = 1) (p = 0, s ≤ 3/4) (YO, o) (NO, f ) (NF, f )

(2/3, 1/3)

(p = 0, q = 2/3, s = 1/3) ((0, 0, 2/3, 1/3), (1/3, 2/3))
19

154 . Chapter 8 Credibility and Sequential Rationality

O F

Y N

o f

1
2

1.5
1.5

2

1

0
0

o f

0
0

2
1

1

FIGURE 8.2 The voluntary Battle of the Sexes game.

perfect information. Things become a bit trickier when we try to expand our reach to
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at this stage. In this game, however, this is not possible, because player 2 has an
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games may seem a bit bizarre—what kind of game will never end? As we will see in
Chapters 10 and 11, such games not only are interesting in their own right but also
will offer critical ways to model realistic situations. Hence our goal is to find a natural
way in which to extend the concept of sequential rationality to games of imperfect
information and to games that have an infinite sequence of moves.

Let’s start with the problem posed by imperfect information. For example, the
problem we encountered in the game depicted in Figure 8.2 is that the best response
of player 2 in his information set depends on the node where he is, or on his beliefs
about where he is in the information set. This of course depends on the action of
player 1, which in turn depends on what player 1 believes that player 2 will do. Thus
it seems that sequential rationality will have to cope with both of these decisions being
interdependent. For this reason we advance the following definition:

Definition 8.2 A proper subgame G of an extensive-form game ! consists of only
a single node and all its successors in ! with the property that if x ∈ G and x′ ∈ h(x)

Voluntary BoS
参与⼈ 2

o f

参与⼈ 1

YO 2, 1 0, 0

YF 0, 0 1, 2

NO 1.5, 1.5 1.5, 1.5

NF 1.5, 1.5 1.5, 1.5



课后练习：兄弟间的博弈

• 兄弟俩针对看电影进⾏下⾯的博弈 

• 哥哥有 20 元钱。在第⼀回合，他可以选择给弟弟 20 元，或给弟弟 10 元（⾃⼰留下 10 元） 

• 在第⼆回合，兄弟俩就看哪部电影进⾏ BoS 博弈： 

- 右表中的回报是看电影带来的，在此基础上，兄弟俩 
可以⽤⾃⼰拥有的钱在电影院买零⻝，每 1 元钱相当于 
1 单位的回报 

• 回答下⾯的问题： 

1. 画出整体博弈的博弈树 

2. 找到所有的纳什均衡（纯策略和混合策略） 

3. 找到所有的 SPE（纯策略和混合策略）

20

弟弟
O F

哥哥
O 16, 12 0, 0

F 0, 0 12, 16


