

5．完全信息动态博亦（二）

深圳大学经济学院 会计学学术学位硕士研究生 专业选修课（2023－2024）
主讲：黄嘉平 中国经济特区研究中心讲师 工学博士 经济学博士
办公室：粤海校区汇文楼1510 Email：huangjp＠szu．edu．cn

序贯理性

不可信的威胁

Incredible threat
－序贯行动 BoS 有三个纯策略纳什均衡：参与人1 $(O, o o),(O, o f),(F, f f)$

不可信

可信

不可信

序贯理性

Sequential rationality

－如果参与人在自己的每一个信息集都做出最优选择，则称之为满足序贯理性 （sequentially rational）

序贯理性的常用定义出现在第15章。第8章中的定义8．1不准确

- 在序贯行动 BoS 中，只有 $(O, o f)$ 中的策略满足序贯理性：
- 参与人 2 在 x_{1} 时，o 是最优行动；在 x_{2} 时，f 是最优行动
- 参与人 1 可以预见参与人 2 的策略 $o f$ ，因此 O 是它的最优反应
- 满足序贯理性的纳什均衡不仅能预测均衡路径上的行动，也可以预测均衡路径外的行动

逆向归纳解

Backward induction solution

－在扩展式博弈中，逆向归纳法意味着：
1．在每个终点前面的节点上，参与人都选择最优行动
2．在更前面的节点上，参与人都能预见后面的最优行动，并选择最优反应
－任意的有限完美信息博弈都存在逆向归纳解，且满足序贯理性。如果对任意参与人 i ，博弈树的所有终点都对应不同的回报，则逆向归纳解是唯一的
－任意的有限完美信息博弈的逆向归纳解都是纳什均衡，因此有限完美信息博弈一定存在纯策略纳什均衡。如果对任意参与人 i ，博亦树的所有终点都对应不同的回报，则满足序贯理性的纯策略纳什均衡是唯一的

逆向归纳法的适用范围

- 考虑右图中的自愿 BoS 博弈：
- 参与人 1 首先选择是否进行 BoS 博亦
- 如果参与人 1 选择不进行 (N) ，则双方的回报为 $(1.5,1.5)$
- 如果参与人 1 选择进行 (Y) ，则双方进行同时行动 BoS
- 这个博奕无法适用逆向归纳法，因为参与人 2 的信息集不是单点，不存在最优纯策略

FIGURE 8．2 The voluntary Battle of the Sexes game．

- 逆向归纳法不适用的博亦包括：
- 不完美信息博栾（任意信息集包含两个或以上节点，或有＂自然＂参与）
- 无法确保在有限回合结束的博亦（可能存在无限多个终点）

子博弈

Subgame

由扩展式博弈 Γ 中的单个节点及其所有下行节点组成的部分博亦树 G 如果满足

$$
x \in G, x^{\prime} \in h(x) \Rightarrow x^{\prime} \in G \quad\left(x^{\prime} \text { 在 } x \text { 所在的信息集中, 则 } x^{\prime} \text { 也在 } G\right. \text { 中) }
$$

则称 G 为 Γ 的子博弈（subgame 或 proper subgame）

FIGURE 8．3 Subgames in a game with perfect information．

FIGURE 8．4 Proper subgames in the voluntary Battle of the Sexes game．

- 双人参与的比大小游戏
- 一副扑克牌中仅包含同等数量的 K 和 A
- 游戏开始前，两个玩家各下注1元
- 玩家 1 抽一张牌，并在看到牌面后选择：
- 结束（ N ）：玩家 2 赢得 2 元
- 继续（ Y ）：玩家 2 行动
- 玩家2无法看到玩家1的牌，他可以选择：
- 放弃（ F ）：玩家 1 赢得 2 元
- 跟注（ C ）：

每个玩家各自再加注1元并翻牌，如果牌面是 K 则玩家 2 赢得 4 元，如果是 A 则玩家 1 赢得 4 元

FIGURE 8．5 A game of cards．

子博奕完美纳什均衡

Subgame－perfect Nash equilibrium

－泽尔腾（Reinhard Selten）在 1975 年提出了子博亦完美纳什均衡的概念，并于 1994 年和海撒尼 （John C．Harsanyi），纳什（John F．Nash Jr．）一起获得诺贝尔经济学奖，获奖理由为＂对非合作博弈的均衡分析的开创性贡献＂

令 Γ 为 n 人扩展式博弈。如果行为策略 $\sigma^{*}=\left(\sigma_{1}^{*}, \sigma_{2}^{*}, \ldots, \sigma_{n}^{*}\right)$ 在 Γ 的任意子博亦 G 上都是纳什均衡，则称 σ^{*} 为子博弈完美（纳什）均衡（subgame－perfect（Nash）equilibrium），可简写为 SPE

- SPE 要求均衡策略在那些偏离了均衡路径的子博弈上也要是纳什均衡
- 对于有限完美信息博亦，纯策略 SPE 等价于逆向归纳纳什均衡
- SPE 将纳什均衡的集合缩小了，因此称之为纳什均衡的一种精炼（refinement）

定理（Selten）：任意有限完美回忆博帟都存在子博弈完美均衡

Voluntary BoS

$$
\text { 参与人 } 2
$$

参与人 1

	0	f
YO	$\underline{\mathbf{2}, \mathbf{1}}$	0,0
YF	0,0	$1, \underline{2}$
NO	$1.5, \underline{1.5}$	$\mathbf{1 . 5}, \mathbf{1 . 5}$
NF	$1.5, \underline{1.5}$	$\mathbf{1 . 5}, \mathbf{1 . 5}$

FIGURE 8．2 The voluntary Battle of the Sexes game．
－纯策略纳什均衡为： $(Y O, o),(N O, f),(N F, f)$
－其中 SPE 为：
$(Y O, o),(N F, f)$

蜈蚣博弈

The centipede game

- 如图所示，根据逆向归纳法，
- 参与人 2 在最终回合应当选择 n

$-\Rightarrow$ 参与人 1 在第三回合应当选择 N
$-\Rightarrow$ 参与人 2 在第二回合应当选择 n
$-\Rightarrow$ 参与人 1 在第一回合应当选择 N
- 逆向归纳纳什均衡为 $(N N, n n)$ ，结果是参与人 1 在第一回合选择 N ，双方的回报为 $(1,1)$
- 此博弈可以拓展为 $2 k$ 回合，参与人 1 在第 $2 i-1$ 回合行动，如果选择 N 则回报为 (i, i) ，如果选择 C 则博弈继续；参与人 2 在第 $2 i$ 回合行动，如果选择 n 则回报为 $(i-1, i+2$ ），如果选择 c 则博弈继续，如果在最终回合选择 c 则回报为 $(k+1, k+1)$
－最终回合参与人 2 选择 c 带来的回报是怕累托最优结果，且帕累托优于纳什均衡的结果 $(1,1)$

斯塔克尔伯格竞争模型

Stackelberg competition

- 斯塔克尔伯格竞争模型是古诺双寡头模型的序贯行动版
- 需求函数 $p=100-q_{1}-q_{2}$ ，可变成本 $c\left(q_{i}\right)=10 q_{i}$
- 假设参与人 1 首先选择产量 q_{1} ，参与人 2 在观察到 q_{1} 后选择自己的产量 q_{2}
- 逆向归纳解
- 在已知 q_{1} 的情况下，参与人 2 选择令利润 $\left(100-q_{1}-q_{2}\right) q_{2}-10 q_{2}$ 最大的产量 q_{2} ，即 $q_{2}^{*}=\left(90-q_{1}\right) / 2$
－参与人 1 选择令利润 $\left(100-q_{1}-q_{2}^{*}\right) q_{1}-10 q_{1}$ 最大的产量 q_{1} ，即 $q_{1}^{*}=45$
$-\Rightarrow q_{2}^{*}=22.5 \Rightarrow$ 回报为 $(1012.5,506.25)$
－古诺模型下的纳什均衡为 $\left(q_{1}^{*}, q_{2}^{*}\right)=(30,30) \Rightarrow$ 回报为 $(900,900)$斯塔克尔伯格模型解释了先行者优势（first－mover advantage）

$$
\begin{aligned}
& \left(100-q_{1}-q_{2}\right) q_{1}-10 q_{1} \\
& \left(100-q_{1}-q_{2}\right) q_{2}-10 q_{2}
\end{aligned}
$$

斯塔克尔伯格竞争模型

Stackelberg competition

－逆向归纳解也是 SPE

$$
\text { (确认 } q_{1}=45 \text { 不是 } q_{2}=22.5 \text { 的最优反应) }
$$

－注意：$\left(q_{1}, q_{2}\right)=(45,22.5)$ 不是 SPE 的正确写法，而应该写成

$$
\left(q_{1}, q_{2}\right)=\left(45, \frac{90-q_{1}}{2}\right)
$$

因为对于参与人 2 ，每一个可能的 q_{1} 都对应一个子博亦

- $\left(q_{1}, q_{2}\right)=(30,30)$ 在斯塔克尔伯格模型中也是纳什均衡！
- 存在无限多个纳什均衡！例如，

$$
q_{1}=c \in[0,90], q_{2}= \begin{cases}(90-c) / 2 & \text { if } q_{1}=c \\ 100 & \text { if } q_{1} \neq c\end{cases}
$$

（确认当 $c=40$ 时，此策略是纳什均衡）

同归于尽博亦

Mutually assured destruction

- 假设两个国家间发生冲突，其中国家 2 首先攻击了国家 1
- 关于两国今后的策略选择可以考虑右图中的博峦：

1．国家 1 可以选择息事宁人 I 或备战 E
2．如果国家 1 选择备战，国家 2 可以选择让步 B ，或进一步升级冲突 N

3．如果国家 2 选择升级冲突，则双方进行同时行动博弈国家1可以选择让步 R 或战争 D国家2可以选择让步 r 或战争 d

如果双方都选择攻击，则会两败俱伤，给双方造成不可挽回的损失

FIGURE 8．11 Mutually assured destruction．

同归于尽博亦

Mutually assured destruction

－首先，我们尝试找出纯策略纳什均衡

	国家2			
	Br	Bd	Nr	Nd
IR	0， 0	0， 0	O， 0	0， 0
ID	0，$\underline{0}$	0， 0	O，$\underline{0}$	$\underline{0}, \underline{0}$
$E R$	10，－10	10，－10	－5，－ 5	－100，－100
$E D$	10，－10	10，－10	－100，－100	－100，－100

纯策略纳什均衡包括：$(I R, N r),(I R, N d),(I R, N r)$ ， $(I D, N d),(E D, B r),(E D, B d)$

FIGURE 8．11 Mutually assured destruction．

同归于尽博亦

Mutually assured destruction

－从纯策略纳什均衡 $(I R, N r),(I R, N d),(I R, N r)$ ， $(I D, N d),(E D, B r),(E D, B d)$ 中找出子博亦完美均衡

- 共有三个子博弈（如右图中所示）
- 子博弈 A 的纳什均衡为：$(R, r),(D, d)$

国家2

－子博弈 B 和 C 中，双方可以考虑两种情形：
1．双方在子博弯 A 中选择均衡 (R, r)
2．双方在子博亦 A 中选择均衡 (D, d)

FIGURE 8．11 Mutually assured destruction．

同归于尽博亦

Mutually assured destruction

－子博弈 B 和 C中，
1．双方在子博亦 A 中选择均衡 (R, r)
此时，国家2在子博弈 B 中的最优对应是 N ，国家 1 在子博亦 C 中的最优对应是 I

2．双方在子博弈 A 中选择均衡 (D, d)
此时，国家2在子博亦 B 中的最优对应是 B ，国家1在子博弈C中的最优对应是 E

- 因此，SPE 包括 $(I R, N r),(E D, B d)$
- （IR，Nr）的均衡路径为国家 1 在第一时间选择息事宁人
- （ $E D, B d$ ）的均衡路径为国家 1 开始备战后，国家 2 预见到同归于尽的结局，因此选择了让步并支付较少的赔偿

FIGURE 8．11 Mutually assured destruction．

练习：混合策略 SPE

－考虑自愿 BoS 博弈，并回答下列问题
1．找到所有的混合策略纳什均衡
2．找到唯一混合策略 SPE

Voluntary BoS

FIGURE 8．2 The voluntary Battle of the Sexes game．

Voluntary BoS

参与人 2

FIGURE 8．2 The voluntary Battle of the Sexes game．

- 混合策略纳什均衡
- 对于参与人 1，策略 $Y F$ 严格劣于 $N O$ 和 $N F$ ，因此可以将其剔除
- 令参与人 1 的策略为 $(p, q, 1-p-q)$ ，参与人 2 的策略为 $(s, 1-s)$ ，则纳什均衡为 $(p=1, s=1),(p=0, s \leq 3 / 4)$ ，其中前者为 $(Y O, o)$ ，后者包含 $(N O, f)$ 和 $(N F, f)$
- BoS 子博亦的混合策略纳什均衡为 $(2 / 3,1 / 3)$
- 混合策略 SPE 为 $(p=0, q=2 / 3, s=1 / 3)$ ，或 $((0,0,2 / 3,1 / 3),(1 / 3,2 / 3))$

课后练习：兄弟间的博亦

- 兄弟俩针对看电影进行下面的博弈
- 哥哥有 20 元钱。在第一回合，他可以选择给弟弟 20 元，或给弟弟 10 元（自己留下 10 元）
- 在第二回合，兄弟俩就看哪部电影进行 BoS 博弈：
- 右表中的回报是看电影带来的，在此基础上，兄弟俩可以用自己拥有的钱在电影院买零食，每 1 元钱相当于 1 单位的回报
－回答下面的问题：

1．画出整体博亦的博弈树
2．找到所有的纳什均衡（纯策略和混合策略）
3．找到所有的 SPE（纯策略和混合策略）

