博弈论与信息经济学

6．不完全信息静态博亦

深圳大学经济学院 会计学学术学位硕士研究生 专业选修课（2023－2024）
主讲：黄嘉平 中国经济特区研究中心讲师 工学博士 经济学博士
办公室：粤海校区汇文楼1510 Email：huangjp＠szu．edu．cn

贝叶斯博亦

不完全信息

Incomplete information

- 完全信息的假设往往过于理想：
- 在古诺模型中，企业可能无法准确了解对手的成本函数
- 多数情况下，人们可能在一定程度上了解对手的偏好，但无法完全确定
- 当我们讨论＂不完全信息＂时，我们在博弈的定义上做出下面的让步
- 参与人了解自己和对手的行动集合
- 参与人不确定对手的偏好（知道对手有几种可能的偏好，并知道各自的概率）
- 上面的博亦称为不完全信息博亦（games of incomplete information）
- 海撒尼（John C．Harsanyi）提出了不完全信息博弈的解法：
- 将具有不同偏好的参与人称为参与人的类型（type），并让＂自然＂在博弈开始前选择类型
- 用此方法，我们可以将不完全信息博亦改写为（完全信息）非完美信息博弈，并用已知方法进行分析

不完全信息的例子

- 左图中为完全信息市场进入博亦
- 我们可以假设参与人 2 有两种类型：理智型（右图左侧）和疯狂型（右图右侧）参与人 1 知道参与人 2 的类型的概率分布为 $(p, 1-p)$

FIGURE 12．1 A simple entry game．

FIGURE 12．2 An incomplete－information entry game．
－＂自然＂首先按照概率分布 $(p, 1-p)$ 选择参与人 2 的类型
－＂自然＂用来选择的概率分布称为先验分布 （prior distribution）

- 我们假设先验分布是共同知识（称为 common prior）
- 参与人了解自己的类型
- 参与人 2 的信息集为单点

FIGURE 12．2 An incomplete－information entry game．

- 参与人 1 了解参与人 2 类型的分布 $(p, 1-p)$ ，我们称之为对参与人 2 类型的信念
- 这本身也是一个很强的假设
- 如果没有这个假设，我们无法分析不完全信息博亦
－此博亦的标准式表达为

Player 1

Player 2				
	$A A$	$A F$	$F A$	$F F$
	0,2	0,2	0,2	0,2
	1,1	$2 p-1,2-p$	$1-2 p, 1-2 p$	$-1,2-3 p$

－当 $p=2 / 3$ 时，博弈矩阵变成

Player 1

	$A A$		$A F$	
FA	$F F$			
O	$\overline{0,2}$	$\overline{0,2}$	$\overline{0,2}$	$\overline{0,2}$
E	$\underline{1,1}$	$\overline{\overline{\frac{1}{3}, \frac{4}{3}}}$	$-\frac{1}{3},-\frac{1}{3}$	$-1,0$

- 纯策略纳什均衡为：$(O, F A),(O, F F),(E, A F)$
- 纯策略 SPE 为 $(E, A F)$

FIGURE 12．2 An incomplete－information entry game．

标准式贝叶斯博弈

Normal－form Bayesian game

- 不完全信息的定义包含以下三部分：
- 参与人的每一种偏好对应一个类型
- 对偏好的不确定型体现为＂自然＂选择参与人的类型
- 先验分布是共同知识（common prior 假设）
n 人静态不完全信息贝叶斯博亦（static Bayesian game of incomplete information）的标准式表达为

$$
\left\langle N,\left\{A_{i}\right\}_{i \in N},\left\{\Theta_{i}\right\}_{i \in N},\left\{v_{i}\left(\cdot ; \theta_{i}\right), \theta_{i} \in \Theta_{i}\right\}_{i \in N},\left\{\phi_{i}\right\}_{i \in N}\right\rangle
$$

其中：
$-N=\{1, \ldots, n\}$ 为参与人集合，A_{i} 为参与人 i 的行动集合，$\Theta_{i}=\left\{\theta_{i 1}, \ldots, \theta_{i k_{i}}\right\}$ 是参与人 i 的类型空间（type space）
$-v_{i}: A \times \Theta_{i} \rightarrow \mathbb{R}$ 是参与人 i 在不同类型下的支付函数，其中 $A=A_{1} \times A_{2} \times \cdots \times A_{n}$
$-\phi_{i}$ 是参与人 i 对其他参与人类型的信念，完整写法为 $\phi_{i}\left(\theta_{-i} \mid \theta_{i}\right)$ ，代表在参与人 i 已知自己的类型为 θ_{i} 时，针对其他参与人类型 θ_{-i} 的条件分布（称为后验分布 posterior distribution）

贝叶斯博弯的扩展式表达

－如果给定一个共同先验分布 $F: \Theta_{1} \times \cdots \times \Theta_{n} \rightarrow[0,1]$ ，就可以推导出一组对应的后验分布 $\left\{\theta_{i}\right\}_{i \in N}$ ，因此也可以将定义中的 $\left\{\theta_{i}\right\}_{i \in N}$ 替换为 F

注意：并不是所有的后验分布都可以由一个共同先验分布导出

－静态贝叶斯博亦可以用下面的方式表达：
1．＂自然＂选择参与人的类型组合 $\theta=\left(\theta_{1}, \theta_{2}, \ldots, \theta_{n}\right)$
2．每个参与人确认自己的类型 θ_{i}（注意这是私密信息 private information），并根据先验分布计算其他参与人类型的后验分布
3．所有参与人同时选择行动 $a_{i} \in A_{i}$
4．对每个行动组合 $a=\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ ，参与人 $i \in N$ 的回报为 $v_{i}\left(a ; \theta_{i}\right)$
此处我们假设回报只受自身类型 θ_{i} 的影响。
也可以假设回报受所有参与人类型的影响，即 $v_{i}(a ; \theta)$

根据先验分布计算后验分布

－联合概率和条件概率：

$$
\operatorname{Pr}(A \cap B)=\operatorname{Pr}(A \mid B) \times \operatorname{Pr}(B)=\operatorname{Pr}(B \mid A) \times \operatorname{Pr}(A)
$$

－贝叶斯公式：

$$
\operatorname{Pr}(A \mid B)=\frac{\operatorname{Pr}(A \cap B)}{\operatorname{Pr}(B)}=\frac{\operatorname{Pr}(A \cap B)}{\operatorname{Pr}(B \cap A)+\operatorname{Pr}\left(B \cap A^{c}\right)}
$$

－我们可以将贝叶斯公式用在类型的后验分布计算上：
先验分布 F 确定了类型的联合分布和边际分布，则后验分布为 $\phi_{i}\left(\theta_{-i} \mid \theta_{i}\right)=\frac{F\left(\theta_{i}, \theta_{-i}\right)}{F\left(\theta_{i}\right)}$

计算后验分布的例子

- 两个参与人各有两个类型：$\Theta_{1}=\{a, b\}, \Theta_{2}=\{c, d\}$
- 先验分布 F 由右侧的联合分布矩阵给出：

Player 1＇s type

	c	d
	c	
	$\frac{1}{6}$	$\frac{1}{3}$
b	$\frac{1}{3}$	$\frac{1}{6}$

－如果参与人 1 观察到自己的类型为 a ，则他对参与人 2 类型的信念（后验分布）为：

$$
\begin{aligned}
& \phi_{1}\left(\theta_{2}=c \mid \theta_{1}=a\right)=\frac{F(a \cap c)}{F(a)}=\frac{F(a \cap c)}{F(a \cap c)+F(a \cap d)}=\frac{1 / 6}{1 / 6+1 / 3}=\frac{1}{3} \\
& \phi_{1}\left(\theta_{2}=d \mid \theta_{1}=a\right)=\frac{F(a \cap d)}{F(a)}=\frac{F(a \cap d)}{F(a \cap d)+F(a \cap c)}=\frac{1 / 3}{1 / 6+1 / 3}=\frac{2}{3}
\end{aligned}
$$

不一致的信念

Inconsistent belief

- 考虑下面的情况
- 参与人为 $N=\{1,2\}$
- 参与人的类型为 $T_{1}=\left\{I_{1}, I_{2}\right\}, T_{2}=\left\{I I_{1}, I I_{2}\right\}$
- 两人的信念（后验分布）由右图所示
- 没有任何先验分布可以推导出这两个后验分布
- 假设先验分布中 $F\left(I_{2}, I_{2}\right)=x$
- 从参与人 1 的信念可知 $F\left(I_{2}, I I_{1}\right)=2 x$
- 从参与人 2 的信念可知

$$
F\left(I_{1}, I I_{1}\right)=2 x, F\left(I_{1}, I I_{2}\right)=4 x
$$

- 满足此条件的 F 和两人的信念矛盾
- 这一讲我们只关注可以由共同先验分布导出的信念

参与人 1 的信念

参与人 2 的信念

类型为 $I I_{2}$ 的参与人 2
对参与人 1 类型的信念

先验分布需要满足的条件

策略与回报

－在完全信息静态博亦中，策略等同于选择一个行动。但在不完全信息博弈中，由于参与人有不同的类型，因此策略需要描述在每一个类型中参与人选择哪一个行动

在贝叶斯博亦 $\left\langle N,\left\{A_{i}\right\}_{i \in N},\left\{\Theta_{i}\right\}_{i \in N},\left\{v_{i}\left(\cdot ; \theta_{i}\right), \theta_{i} \in \Theta_{i}\right\}_{i \in N},\left\{\phi_{i}\right\}_{i \in N}\right\rangle$ 中，参与人 i 的纯策略是从 i 的类型空间 Θ_{i} 映射到行动集 A_{i} 的函数 $s_{i}: \Theta_{i} \rightarrow A_{i}$ ，即 $s_{i}\left(\theta_{i}\right)$ 给出了类型为 θ_{i} 时参与人 i 选择的行动。参与人 i 的混合策略是他的纯策略上的概率分布

令 $\Theta=\Theta_{1} \times \Theta_{2} \times \cdots \times \Theta_{n}$ ，则参与人 i 关于纯策略组合 $s=\left(s_{1}(\cdot), s_{2}(\cdot), \cdots, s_{n}(\cdot)\right)$ 的事前（ex ante，即博亦开始前）和事中（interim，即＂自然＂选择类型后，参与人选择行动前）期望回报分别为

$$
\begin{aligned}
& V_{i}(s)=\mathrm{E}_{F}\left[v_{i}\left(s\left(\theta_{i}\right), s\left(\theta_{-i}\right) ; \theta_{i}\right)\right]=\sum_{\left(\theta_{i} \theta_{-i}\right) \in \Theta} F\left(\theta_{i}, \theta_{-i}\right) v_{i}\left(s\left(\theta_{i}\right), s\left(\theta_{-i}\right) ; \theta_{i}\right) \quad \text { 这里假设了离散类型空间 } \\
& V_{i}\left(s \mid \theta_{i}\right)=\mathrm{E}_{-\theta_{i}}\left[v_{i}\left(s\left(\theta_{i}\right), s\left(\theta_{-i}\right) ; \theta_{i}\right) \mid \theta_{i}\right]=\sum_{\theta_{-i} \in \Theta_{-i}} \phi\left(\theta_{-i} \mid \theta_{i}\right) v_{i}\left(s\left(\theta_{i}\right), s\left(\theta_{-i}\right) ; \theta_{i}\right) \quad \Rightarrow V_{i}(s)=\sum_{\theta_{i} \in \Theta_{i}} F\left(\theta_{i}\right) V_{i}\left(s \mid \theta_{i}\right)
\end{aligned}
$$

策略与回报

－在不完全信息市场进入博亦中，参与人 2 有两个类型 （ r 理智型，c 疯狂型），其先验分布 F 为 $(p, 1-p$ ）

- 考虑参与人 2 选择纯策略 $A F$ ，即 $s_{2}\left(\theta_{2}\right)= \begin{cases}A & \text { if } \theta_{2}=r \\ F & \text { if } \theta_{2}=c\end{cases}$
- 参与人 1 只有一个类型，因此先验分布等于后验分布，其事前和事中期望回报一致。当他选择策略 E 时，

$$
\begin{aligned}
V_{1}(E, A F)=\mathrm{E}\left[v_{1}\left(E, s_{2}\left(\theta_{2}\right)\right)\right] & =p v_{1}\left(E, s_{2}(r)\right)+(1-p) v_{1}\left(E, s_{2}(c)\right) \\
& =p \times 1+(1-p) \times(-1)
\end{aligned}
$$

－参与人 2 的事前期望回报为

$$
\begin{aligned}
V_{2}(E, A F)=\mathrm{E}\left[v_{2}\left(E, s_{2}\left(\theta_{2}\right) ; \theta_{2}\right)\right] & =p v_{2}\left(E, s_{2}(r) ; r\right)+(1-p) v_{1}\left(E, s_{2}(c) ; c\right) \\
& =p \times 1+(1-p) \times 2
\end{aligned}
$$

FIGURE 12．2 An incomplete－information entry game．
虽然市场进入博弈是序贯行动博弈，但我们也可以将其转换为同时行动博弈，并当作静态博弈分析

事中期望回报为

$$
V_{2}(E, A F \mid r)=\mathrm{E}\left[v_{2}\left(E, s_{2}\left(\theta_{2}\right) ; r\right) \mid r\right]=v_{2}\left(E, s_{2}(r) ; r\right)=1 \quad V_{2}(E, A F \mid c)=\mathrm{E}\left[v_{2}\left(E, s_{2}\left(\theta_{2}\right) ; c\right) \mid c\right]=v_{2}\left(E, s_{2}(c) ; c\right)=2
$$

贝叶斯纳什均衡

Bayesian Nash equilibrium

在贝叶斯博亦 $\left\langle N,\left\{A_{i}\right\}_{i \in N},\left\{\Theta_{i}\right\}_{i \in N},\left\{v_{i}\left(\cdot ; \theta_{i}\right), \theta_{i} \in \Theta_{i}\right\}_{i \in N},\left\{\phi_{i}\right\}_{i \in N}\right\rangle$ 中，如果纯策略组合 $s^{*}=\left(s_{1}^{*}(\cdot), s_{2}^{*}(\cdot), \ldots, s_{n}^{*}(\cdot)\right)$ 对于任意参与人 i 的任意类型 $\theta_{i} \in \Theta_{i}$ 以及任意行动 $a_{i} \in A_{i}$都满足

$$
\begin{array}{cc}
V_{i}\left(s^{*}\right) \geq V_{i}\left(a_{i}, s_{-i}^{*}\right) \quad \text { 事前期望回报 } \\
\Leftrightarrow & V_{i}\left(s^{*} \mid \theta_{i}\right) \geq V_{i}\left(a_{i}, s_{-i}^{*} \mid \theta_{i}\right) \quad \text { 事中期望回报 }
\end{array}
$$

则称 s^{*} 为纯策略贝叶斯纳什均衡（pure－strategy Bayesian Nash equilibrium）

注：基于事前期望回报的是纳什均衡，基于事中期望回报的定义称为贝叶斯均衡（Bayesian equilibrium）
海撒尼证明了在有限类刑空间下两者等价海撒尼证明了在有限类型空间下两者等价

胆小鬼博亦

Game of chicken

－两个青年比赛谁胆大：两人同时开着父母的车冲向对方，在相撞前的瞬间，两人需要（同时）选择避让或继续直行

- 如果选择避让，则得不到朋友的尊敬，但也不会损失什么，即回报为 0
- 如果一人选择直行，另一人选择避让，则选择直行者会得到尊敬，其回报为 $R>0$
- 如果两人都选择直行，则两人平分朋友的尊敬（每人获得 $R / 2$ ），但因为相撞带来的损失为 k（车损人伤），因此各自的回报为 $R / 2-k$
- 假设青年的父母各有两种类型：严厉的 $(k=H)$ 或仁慈的 $(k=L), H>L$
- 父母类型的先验分布为 $(1 / 2,1 / 2)$
- 两人知道各自父母的类型，但不知道对方父母的类型

FIGURE 12.3 The game of chicken with incomplete information.

－我们可以通过事前期望回报计算贝叶斯纳什均衡

－例如：策略组合 $(C D, d d)$ 对应的参与人 1 的事前期望回报为

$$
\begin{aligned}
V_{1}(C D, d d)=\mathrm{E}_{F}\left[v_{1}\left(C D, d d ; \theta_{1}\right)\right] & =\frac{1}{4} v_{1}(C, d ; L)+\frac{1}{4} v_{1}(C, d ; L)+\frac{1}{4} v_{1}(D, d ; H)+\frac{1}{4} v_{1}(D, d ; H) \\
& =\frac{1}{4} \times 0+\frac{1}{4} \times 0+\frac{1}{4} \times\left(\frac{R}{2}-H\right)+\frac{1}{4} \times\left(\frac{R}{2}-H\right)=\frac{R}{4}-\frac{H}{2}
\end{aligned}
$$

同理可计算其他事前期望回报

－将回报写入博亦矩阵，可得
Player 2

$c c$	$c d$		$d c$	$d d$
$C C$	0,0	$0, \frac{R}{2}$	$0, \frac{R}{2}$	$0, R$
$C D$	$\frac{R}{2}, 0$	$\frac{3 R}{8}-\frac{H}{4}, \frac{3 R}{8}-\frac{H}{4}$	$\frac{3 R}{8}-\frac{H}{4}, \frac{3 R}{8}-\frac{L}{4}$	$\frac{R}{4}-\frac{H}{2}, \frac{3 R}{4}-\frac{L}{4}-\frac{H}{4}$
$D C$	$\frac{R}{2}, 0$	$\frac{3 R}{8}-\frac{L}{4}, \frac{3 R}{8}-\frac{H}{4}$	$\frac{3 R}{8}-\frac{L}{4}, \frac{3 R}{8}-\frac{L}{4}$	$\frac{R}{4}-\frac{L}{2}, \frac{3 R}{4}-\frac{L}{4}-\frac{H}{4}$
$D D$	$R, 0$	$\frac{3 R}{4}-\frac{L}{4}-\frac{H}{4}, \frac{R}{4}-\frac{H}{2}$	$\frac{3 R}{4}-\frac{L}{4}-\frac{H}{4}, \frac{R}{4}-\frac{L}{2}$	$\frac{R}{2}-\frac{L}{2}-\frac{H}{2}, \frac{R}{2}-\frac{L}{2}-\frac{H}{2}$

当 $R=8, H=16, L=0$ 时，此博弈的贝叶斯纳什均衡就是下面的矩阵博亦中的纳什均衡 $(D C, d c)$

Player 2

练习：贝叶斯均衡

－继续考虑胆小鬼博亦，并回答下列问题：
1．计算每个参与人的事中期望回报
例如参与人 1 在 $\theta_{1}=H$ 时，策略组合 $(C D, d d)$ 的事中期望回报是

$$
\begin{aligned}
V_{1}(C D, d d \mid H) & =E_{\theta_{2}}\left[v_{1}\left(C D, s_{2}\left(\theta_{2}\right) ; H\right) \mid H\right] \\
& =\frac{1}{2}\left(\frac{R}{2}-H\right)+\frac{1}{2}\left(\frac{R}{2}-H\right) \\
& =\frac{R}{2}-H
\end{aligned}
$$

2．找到 $R=8, H=16, L=0$ 时的纯策略贝叶斯均衡

FIGURE 12．3 The game of chicken with incomplete information．

课后阅读

－自主学习书中第 12 章第 12．2．2 小节

