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博弈论与信息经济学
6. 不完全信息静态博弈



⻉叶斯博弈



不完全信息
Incomplete information

• 完全信息的假设往往过于理想： 

- 在古诺模型中，企业可能⽆法准确了解对⼿的成本函数 

- 多数情况下，⼈们可能在⼀定程度上了解对⼿的偏好，但⽆法完全确定 

• 当我们讨论“不完全信息”时，我们在博弈的定义上做出下⾯的让步 

- 参与⼈了解⾃⼰和对⼿的⾏动集合 

- 参与⼈不确定对⼿的偏好（知道对⼿有⼏种可能的偏好，并知道各⾃的概率） 

• 上⾯的博弈称为不完全信息博弈（games of incomplete information） 

• 海撒尼（John C. Harsanyi）提出了不完全信息博弈的解法： 

- 将具有不同偏好的参与⼈称为参与⼈的类型（type），并让“⾃然”在博弈开始前选择类型 

- ⽤此⽅法，我们可以将不完全信息博弈改写为（完全信息）⾮完美信息博弈，并⽤已知⽅法进⾏分析
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不完全信息的例⼦

• 左图中为完全信息市场进⼊博弈 

• 我们可以假设参与⼈ 2 有两种类型：理智型（右图左侧）和疯狂型（右图右侧） 
参与⼈ 1 知道参与⼈ 2 的类型的概率分布为  (p, 1 − p)
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FIGURE 12.2 An incomplete-information entry game.

he gets from (Enter, Fight) is 2 instead of −1. The structure of the game is fixed by the
set of players N and the action spaces Ai for each player i ∈ N, yet Nature chooses
which type of player 2 is playing the game with player 1. To complete the structure of
this game we need to state the likelihood or probability of each type being selected by
Nature. Let p denote the probability that Nature chooses the rational type. We can now
depict the extensive form of this incomplete-information entry game in Figure 12.2.

Before being able to analyze this game, we must address the issue of what players
know when they play the game. Recall that our motivating examples were descriptions
of situations in which players were uncertain about the preferences of other players.
To discuss optimal behavior, we have to let the players maximize their payoffs given
their beliefs about the situation they are in, just as we did with the analysis of single-
person decisions and with games of complete information. Thus we must assume that
players know their own preferences, which in turn will allow us to analyze a player’s
best response given his assumptions about the behavior of his opponents. This is the
reason for the single information set in Figure 12.2, which shows that player 1 is
uncertain about the preferences of player 2, but player 2 knows what his preferences
are when he needs to make a decision.

A final issue still needs to be addressed. If players know their own preferences, but
they do not know the preferences or types of their opponents, then what must players
know in order for them to have a well-defined best response and in turn let us perform
equilibrium analysis? The natural step, as Harsanyi realized, is to require players to
form correct beliefs about the preferences and types of their opponents. This in turn
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• “⾃然”⾸先按照概率分布  选择参与⼈ 2 的 
类型 

- “⾃然”⽤来选择的概率分布称为先验分布 
（prior distribution） 

- 我们假设先验分布是共同知识（称为 common prior） 

• 参与⼈了解⾃⼰的类型 

- 参与⼈ 2 的信息集为单点 

• 参与⼈ 1 了解参与⼈ 2 类型的分布 ，我们称之为对参与⼈ 2 类型的信念 

- 这本身也是⼀个很强的假设 

- 如果没有这个假设，我们⽆法分析不完全信息博弈

(p, 1 − p)

(p, 1 − p)
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• 此博弈的标准式表达为 

• 当  时，博弈矩阵变成 

- 纯策略纳什均衡为： , ,  

- 纯策略 SPE 为 

p = 2/3

(O, FA) (O, FF) (E, AF)

(E, AF)
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makes it possible for players to form rational conjectures about the way in which their
opponents will play the game.

For this reason we assume that, despite each player not necessarily knowing the
actual preferences of his opponents, he does know the precise way in which Nature
chooses these preferences. That is, each player knows the probability distribution over
types, and this itself is common knowledge among the players of the game. In the entry
game of Figure 12.2 this is given by specifying that p is common knowledge, and
hence player 1 knows that the probability that he is at the left node in his information
set is p. This is often called the common prior assumption, and it means that all the
players agree on the way the world works, as described by the probabilities according
to which Nature chooses the different types of players. This is of course a strong
assumption, but without it we will not be able even to discuss equilibrium behavior.

Now that we have completed the extensive-form representation of this game, we
can turn to its normal form. Notice that in the normal form player 2 must have four pure
strategies: in each of his information sets he has two actions from which to choose.
Let’s define a strategy of player 2 as xy ∈ {AA, AF, FA, FF }, where x describes
what a rational player 2 does and y what a crazy one does. This is a preview of what we
will soon see more generally: when we introduce incomplete information, a strategy
of a player is now a prescription that tells each type of a player what he should do if
this is the type that Nature chose for the game. The strategy set for player 1 is simply
{E, O}.

As we have seen earlier in Section 7.3, each pair of pure strategies will result in a
unique path of play that starts with Nature’s choice and then follows with the actions
of both players. In this example, if, say, player 2 plays AF (A if he is rational and
F if he is crazy), and if player 1 plays E, then with probability p the outcome will
yield payoffs of (1, 1), and with probability (1− p) the payoffs will be (−1, 2). Thus
in expectations the pair of payoffs from the pair of strategies (AF, E) is

v1 = p × 1 + (1 − p) × (−1) = 2p − 1

v2 = p × 1 + (1 − p) × 2 = 2 − p.

In this way we can compute the expected payoffs of both players from each pair of
strategies, which results in the following normal-form matrix game:

Player 2
AA AF FA FF

Player 1
O 0, 2 0, 2 0, 2 0, 2

E 1, 1 2p − 1, 2 − p 1 − 2p, 1 − 2p −1, 2 − 3p

For concreteness, set p = 2
3 , which results in the following normal-form matrix

game:

Player 2
AA AF FA FF

Player 1
O 0, 2 0, 2 0, 2 0, 2

E 1, 1 1
3 , 4

3 − 1
3 , − 1

3 −1, 0

Now that we have the normal-form matrix of this game, we can be agnostic about
its origins and the way we constructed it, and instead just treat it as we would any other
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标准式⻉叶斯博弈
Normal-form Bayesian game

• 不完全信息的定义包含以下三部分： 

- 参与⼈的每⼀种偏好对应⼀个类型 

- 对偏好的不确定型体现为“⾃然”选择参与⼈的类型 

- 先验分布是共同知识（common prior 假设） 

 ⼈静态不完全信息⻉叶斯博弈（static Bayesian game of incomplete information）的标准式表达为 
 
   
 
其中： 

-  为参与⼈集合，  为参与⼈  的⾏动集合，  是参与⼈  的类型空间（type space） 

-  是参与⼈  在不同类型下的⽀付函数，其中  

-  是参与⼈  对其他参与⼈类型的信念，完整写法为 ，代表在参与⼈  已知⾃⼰的类型为  时，针对其他参
与⼈类型  的条件分布（称为后验分布 posterior distribution）

n

⟨N, {Ai}i∈N, {Θi}i∈N, {vi( ⋅ ; θi), θi ∈ Θi}i∈N, {ϕi}i∈N⟩

N = {1,…, n} Ai i Θi = {θi1, …, θiki
} i

vi : A × Θi → ℝ i A = A1 × A2 × ⋯ × An

ϕi i ϕi(θ−i ∣ θi) i θi
θ−i
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⻉叶斯博弈的扩展式表达

• 如果给定⼀个共同先验分布 ，就可以推导出⼀组对应的后验分
布 ，因此也可以将定义中的  替换为   

• 静态⻉叶斯博弈可以⽤下⾯的⽅式表达： 

1. “⾃然”选择参与⼈的类型组合  

2. 每个参与⼈确认⾃⼰的类型  （注意这是私密信息 private information），并根据先验分
布计算其他参与⼈类型的后验分布 

3. 所有参与⼈同时选择⾏动  

4. 对每个⾏动组合 ，参与⼈  的回报为 

F : Θ1 × ⋯ × Θn → [0,1]
{θi}i∈N {θi}i∈N F

θ = (θ1, θ2, …, θn)

θi

ai ∈ Ai

a = (a1, a2, …, an) i ∈ N vi(a; θi)

8

此处我们假设回报只受⾃身类型  的影响。

也可以假设回报受所有参与⼈类型的影响，即 

θi
vi(a; θ)

注意：并不是所有的后验分布都可以由⼀个

共同先验分布导出



根据先验分布计算后验分布

• 联合概率和条件概率： 
 

  

• ⻉叶斯公式： 
 

  

• 我们可以将⻉叶斯公式⽤在类型的后验分布计算上： 
 

先验分布  确定了类型的联合分布和边际分布，则后验分布为 

Pr(A ∩ B) = Pr(A ∣ B) × Pr(B) = Pr(B ∣ A) × Pr(A)

Pr(A ∣ B) =
Pr(A ∩ B)

Pr(B)
=

Pr(A ∩ B)
Pr(B ∩ A) + Pr(B ∩ Ac)

F ϕi(θ−i ∣ θi) =
F(θi, θ−i)

F(θi)

9
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计算后验分布的例⼦

• 两个参与⼈各有两个类型： ,  

• 先验分布  由右侧的联合分布矩阵给出： 

• 如果参与⼈ 1 观察到⾃⼰的类型为 ，则他对参与⼈ 2 类型的信念（后验分布）为： 
 

  

Θ1 = {a, b} Θ2 = {c, d}

F

a

ϕ1(θ2 = c ∣ θ1 = a) =
F(a ∩ c)

F(a)
=

F(a ∩ c)
F(a ∩ c) + F(a ∩ d)

=
1/6

1/6 + 1/3
=

1
3

ϕ1(θ2 = d ∣ θ1 = a) =
F(a ∩ d)

F(a)
=

F(a ∩ d)
F(a ∩ d) + F(a ∩ c)

=
1/3

1/6 + 1/3
=

2
3
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Player 2’s type
c d

Player 1’s type
a 1

6
1
3

b 1
3

1
6

That is, the prior probability that player 1 is type a and player 2 is type d is equal to
the prior probability that player 1 is type b and player 2 is type c, and this probability
is 1

3. Similarly the prior probability that player 1 is type a and player 2 is type c is
equal to the prior probability that player 1 is type b and player 2 is type d, and this
probability is 1

6 . The common prior assumption implies that each of the two players
takes as given that Nature chooses the types according to the matrix.

Now imagine that player 1 learns that his type is a. What must be his belief about
player 2’s type? Using the conditional probability formula in (12.1),

φ1(θ2 = c|θ1 = a) = Pr{θ1 = a ∩ θ2 = c}
Pr{θ1 = a} =

1
6

1
6 + 1

3

= 1
3
,

and similarly

φ1(θ2 = d|θ1 = a) = Pr{θ1 = a ∩ θ2 = d|}
Pr{θ1 = a} =

1
3

1
6 + 1

3

= 2
3
.

12.1.3 Strategies and Bayesian Nash Equilibrium

Recall that in the static normal-form games of complete information described in
Section 3.1 we did not make a distinction between actions and strategies because
choices were made once and for all. For games of incomplete information, however,
we need to be a bit more careful to specify strategies correctly. The representation of a
Bayesian game described earlier has action sets, Ai, for each player i ∈ N . However,
each player i can be one of several types θi ∈ #i, and each type θi may choose a
different action from the set Ai. Thus to define a strategy for player i we need to
specify what each type θi ∈ #i of player i will choose when Nature calls upon this
type to play the game. For this we define strategies as follows:

Definition 12.3 Consider a static Bayesian game

〈
N, {Ai}ni=1, {#i}ni=1, {vi(.; θi), θi ∈ #i}ni=1, {φi}ni=1

〉
.

A pure strategy for player i is a function si : #i → Ai that specifies a pure action
si(θi) that player i will choose when his type is θi. A mixed strategy is a probability
distribution over a player’s pure strategies.

This turns out to be a convenient way to specify strategies for Bayesian games. You
can think of it as if each player chose his type-contingent strategy before he learned his
type and then played according to that strategy. This should remind you of strategies
for extensive-form games that are defined as mappings from information sets to
actions, where a pure strategy is a rulebook of what to choose in each information
set. In Bayesian games we can think of the types of players as being their information



不⼀致的信念
Inconsistent belief

• 考虑下⾯的情况 

- 参与⼈为  

- 参与⼈的类型为 ,  

- 两⼈的信念（后验分布）由右图所示 

• 没有任何先验分布可以推导出这两个 
后验分布 

- 假设先验分布中  

- 从参与⼈ 1 的信念可知  

- 从参与⼈ 2 的信念可知  
,  

- 满⾜此条件的  和两⼈的信念⽭盾 

• 这⼀讲我们只关注可以由共同先验分布导出的信念

N = {1,2}

T1 = {I1, I2} T2 = {II1, II2}

F(I2, II2) = x

F(I2, II1) = 2x

F(I1, II1) = 2x F(I1, II2) = 4x

F

11

参与⼈ 1 的信念

II1 II2
I1 3/7 4/7
I2 2/3 1/3

类型为  的参与⼈ 1

对参与⼈ 2 类型的信念

I1

参与⼈ 2 的信念

II1 II2
I1 1/2 4/5
I2 1/2 1/5

类型为  的参与⼈ 2

对参与⼈ 1 类型的信念

II2

先验分布需要满⾜的条件

II1 II2
I1 2x 4x
I2 2x x



策略与回报

• 在完全信息静态博弈中，策略等同于选择⼀个⾏动。但在不完全信息博弈中，由于参与⼈有不同的类型，
因此策略需要描述在每⼀个类型中参与⼈选择哪⼀个⾏动 

在⻉叶斯博弈  中，参与⼈  的纯策略是从  的类型空间 
 映射到⾏动集  的函数 ，即  给出了类型为  时参与⼈  选择的⾏动。参与⼈  的混合

策略是他的纯策略上的概率分布 

令 ，则参与⼈  关于纯策略组合  的事前（ex ante，即博弈
开始前）和事中（interim，即“⾃然”选择类型后，参与⼈选择⾏动前）期望回报分别为 
 

         

⟨N, {Ai}i∈N, {Θi}i∈N, {vi( ⋅ ; θi), θi ∈ Θi}i∈N, {ϕi}i∈N⟩ i i
Θi Ai si : Θi → Ai si(θi) θi i i

Θ = Θ1 × Θ2 × ⋯ × Θn i s = (s1( ⋅ ), s2( ⋅ ), ⋯, sn( ⋅ ))

Vi(s) = EF[vi(s(θi), s(θ−i); θi)] = ∑
(θi,θ−i)∈Θ

F(θi, θ−i) vi(s(θi), s(θ−i); θi)

Vi(s |θi) = E−θi[vi(s(θi), s(θ−i); θi) ∣ θi] = ∑
θ−i∈Θ−i

ϕ(θ−i |θi) vi(s(θi), s(θ−i); θi)

12

这⾥假设了离散类型空间

  ⇒ Vi(s) = ∑
θi∈Θi

F(θi)Vi(s |θi)



策略与回报

• 在不完全信息市场进⼊博弈中，参与⼈ 2 有两个类型 
（  理智型，  疯狂型），其先验分布  为  

- 考虑参与⼈ 2 选择纯策略 ，即  

- 参与⼈ 1 只有⼀个类型，因此先验分布等于后验分布，其事前和 
事中期望回报⼀致。当他选择策略  时， 
 

     

- 参与⼈ 2 的事前期望回报为 
 

     
 

事中期望回报为 
 

    

r c F (p, 1 − p)

AF s2(θ2) = {A  if θ2 = r
F  if θ2 = c

E

V1(E, AF) = E[v1(E, s2(θ2))] = pv1(E, s2(r)) + (1 − p)v1(E, s2(c))
= p × 1 + (1 − p) × (−1)

V2(E, AF) = E[v2(E, s2(θ2); θ2)] = pv2(E, s2(r); r) + (1 − p)v1(E, s2(c); c)
= p × 1 + (1 − p) × 2

V2(E, AF |r) = E[v2(E, s2(θ2); r) ∣ r] = v2(E, s2(r); r) = 1 V2(E, AF |c) = E[v2(E, s2(θ2); c) ∣ c] = v2(E, s2(c); c) = 2

13
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1
1

–1
–1

2

Fight Accommodate

Out Enter

0
2

1

FIGURE 12.1 A simple entry game.

O E

p 1 – p

F A
0
2

2 2

Nature

–1
–1

1
1

O E

F A
0
2

–1
2

1
1

1

FIGURE 12.2 An incomplete-information entry game.

he gets from (Enter, Fight) is 2 instead of −1. The structure of the game is fixed by the
set of players N and the action spaces Ai for each player i ∈ N, yet Nature chooses
which type of player 2 is playing the game with player 1. To complete the structure of
this game we need to state the likelihood or probability of each type being selected by
Nature. Let p denote the probability that Nature chooses the rational type. We can now
depict the extensive form of this incomplete-information entry game in Figure 12.2.

Before being able to analyze this game, we must address the issue of what players
know when they play the game. Recall that our motivating examples were descriptions
of situations in which players were uncertain about the preferences of other players.
To discuss optimal behavior, we have to let the players maximize their payoffs given
their beliefs about the situation they are in, just as we did with the analysis of single-
person decisions and with games of complete information. Thus we must assume that
players know their own preferences, which in turn will allow us to analyze a player’s
best response given his assumptions about the behavior of his opponents. This is the
reason for the single information set in Figure 12.2, which shows that player 1 is
uncertain about the preferences of player 2, but player 2 knows what his preferences
are when he needs to make a decision.

A final issue still needs to be addressed. If players know their own preferences, but
they do not know the preferences or types of their opponents, then what must players
know in order for them to have a well-defined best response and in turn let us perform
equilibrium analysis? The natural step, as Harsanyi realized, is to require players to
form correct beliefs about the preferences and types of their opponents. This in turn

虽然市场进⼊博弈是序贯⾏动博弈，但我们也可以将其

转换为同时⾏动博弈，并当作静态博弈分析



⻉叶斯纳什均衡
Bayesian Nash equilibrium

在⻉叶斯博弈  中，如果纯策略组合 
 对于任意参与⼈  的任意类型  以及任意⾏动  

都满⾜ 
 
  
 
          
 
则称  为纯策略⻉叶斯纳什均衡（pure-strategy Bayesian Nash equilibrium）

⟨N, {Ai}i∈N, {Θi}i∈N, {vi( ⋅ ; θi), θi ∈ Θi}i∈N, {ϕi}i∈N⟩
s* = (s*1 ( ⋅ ), s*2 ( ⋅ ), …, s*n ( ⋅ )) i θi ∈ Θi ai ∈ Ai

Vi(s*) ≥ Vi(ai, s*−i)

⇔ Vi(s* |θi) ≥ Vi(ai, s*−i |θi)

s*

14

事前期望回报

事中期望回报

注：基于事前期望回报的是纳什均衡，基于事中期望回报的定义称为⻉叶斯均衡（Bayesian equilibrium）

       海撒尼证明了在有限类型空间下两者等价



胆⼩⻤博弈
Game of chicken

• 两个⻘年⽐赛谁胆⼤：两⼈同时开着⽗⺟的⻋冲向对⽅，在相撞前的瞬间，两⼈需要（同
时）选择避让或继续直⾏ 

• 如果选择避让，则得不到朋友的尊敬，但也不会损失什么，即回报为  

• 如果⼀⼈选择直⾏，另⼀⼈选择避让，则选择直⾏者会得到尊敬，其回报为  

• 如果两⼈都选择直⾏，则两⼈平分朋友的尊敬（每⼈获得 ），但因为相撞带来的损失
为 （⻋损⼈伤），因此各⾃的回报为  

• 假设⻘年的⽗⺟各有两种类型：严厉的（ ）或仁慈的（ ），  

• ⽗⺟类型的先验分布为  

• 两⼈知道各⾃⽗⺟的类型，但不知道对⽅⽗⺟的类型

0

R > 0

R/2
k R/2 − k

k = H k = L H > L

(1/2, 1/2)

15
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FIGURE 12.3 The game of chicken with incomplete information.

There is, however, a potential difference between these two youngsters: The
punishment, k, depends on the type of parents they have. For each kid, parents can be
either harsh (H ) or lenient (L) with equal probability, and the draws from Nature on
the types of parents are independently distributed. This means that the likelihood that
player i’s parents are harsh is equal to 1

2 and is independent of the type of parents that
player j has. If player i’s parents are harsh then they will beat the living daylights
out of their child, which imposes a high cost of an accident, denoted by k = H . If
instead the parents are lenient then they will give their child a long lecture on why
his behavior is unacceptable, which imposes a lower cost of an accident, denoted by
k = L < H . Each kid knows the type of his parents but does not know the type of
his opponent’s parents. The distribution of types is common knowledge (this is the
common prior assumption).

The extensive form of this game is depicted in Figure 12.3. There are four states
of Nature, θ1θ2 ∈ {LL, LH, HL, HH } that denote the types of player 1 and player
2, respectively, and each of these four states occurs with equal probability because of
the probability distributions described earlier. The structure of the information sets
follows from the knowledge of the players when they make their moves. Player 1,
for example, cannot distinguish between the states of Nature LL and LH (his type is
L), nor can he distinguish between HL and HH (his type is H ). However, he knows
what his own type is, and hence he can distinguish between these two pairs of states. A
similar logic explains the information sets of player 2. The action sets of each player
are A1 = {C, D} and A2 = {c, d}, where C (or c) stands for “chicken” and D (or d)
stands for “drive.”

From the extensive form in Figure 12.3 we can derive the matrix form as follows.
A strategy for player 1 is denoted by xy ∈ S1 = {CC, CD, DC, DD}, where x is
what he does if he is an L type and y is what he does if he is an H type. Similarly
S2 = {cc, cd, dc, dd}. The payoffs are calculated using the probabilities over the

θ1 = L θ1 = H

θ2 = L

θ2 = H完全信息胆⼩⻤博弈

• 类型空间为 



• 两⼈的⾏动集分别为 
, 


• 两⼈的策略集分别为 
 

Θ = {LL, LH, HL, HH}

A1 = {C, D} A2 = {c, d}

S1 = {CC, CD, DC, DD}
S2 = {cc, cd, dc, dd}



• 我们可以通过事前期望回报计算⻉叶斯纳什均衡 

- 例如：策略组合  对应的参与⼈ 1 的事前期望回报为 
 

 

 
同理可计算其他事前期望回报 

- 将回报写⼊博弈矩阵，可得

(CD, dd)

V1(CD, dd) = EF[v1(CD, dd; θ1)] =
1
4

v1(C, d; L) +
1
4

v1(C, d; L) +
1
4

v1(D, d; H) +
1
4

v1(D, d; H)

=
1
4

× 0 +
1
4

× 0 +
1
4

× (
R
2

− H) +
1
4

× (
R
2

− H) =
R
4

−
H
2
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states of Nature together with the strategies of the players. For example, if player
1 chooses CD and player 2 chooses dd then the expected payoffs for player 1 are

Ev1(CD, dd) = 1
4

× v1(C, d; L) + 1
4

× v1(C, d; L) + 1
4

× v1(D, d; H) + 1
4

× v1(D, d; H)

= 1
4

× 0 + 1
4

× 0 + 1
4

×
(

R

2
− H

)
+ 1

4
×

(
R

2
− H

)
= R

4
− H

2

and the expected payoffs for player 2 are

Ev2(CD, dd) = 1
4

× v2(C, d; L) + 1
4

× v2(C, d; H) + 1
4

× v2(D, d; L) + 1
4

× v2(D, d; H)

= 1
4

× R + 1
4

× R + 1
4

×
(

R

2
− L

)
+ 1

4
×

(
R

2
− H

)
= 3R

4
− L

4
− H

4
.

In a similar way we can calculate the payoffs from all the other combinations of pure
strategies for each player (this would be useful practice for you if things still feel a
bit shaky mathematically). This results in the following matrix-form Bayesian game:

Player 2
cc cd dc dd

CC 0, 0 0, R
2 0, R

2 0, R

Player 1
CD R

2 , 0 3R
8 − H

4 , 3R
8 − H

4
3R
8 − H

4 , 3R
8 − L

4
R
4 − H

2 , 3R
4 − L

4 − H
4

DC R
2 , 0 3R

8 − L
4 , 3R

8 − H
4

3R
8 − L

4 , 3R
8 − L

4
R
4 − L

2 , 3R
4 − L

4 − H
4

DD R, 0 3R
4 − L

4 − H
4 , R

4 − H
2

3R
4 − L

4 − H
4 , R

4 − L
2

R
2 − L

2 − H
2 , R

2 − L
2 − H

2

To solve for the Bayesian Nash equilibria we need to have more information about
the parameters R, H , and L. Assume that R = 8, H = 16, and L = 0, which results
in the following matrix-form game:

Player 2
cc cd dc dd

CC 0, 0 0, 4 0, 4 0, 8

Player 1
CD 4, 0 −1, −1 −1, 3 −6, 2

DC 4, 0 3, −1 3, 3 2, 2

DD 8, 0 2, −6 2, 2 −4, −4

A quick analysis reveals that the game has a unique pure-strategy Bayesian Nash
equilibrium: (DC, dc). That is, the children of lenient parents will continue driving
head on, while those of harsh parents will swerve to avoid the costly consequences. If
the payoffs we assumed are indeed representative of this situation then the view that
harsh upbringing yields better outcomes can be supported. Perhaps, however, children
of lenient parents learn somehow to respect their parents’ property (the car), while
children of harsh parents, despite anticipating the pain of a harsh punishment, do not
respect their parents’ property. In light of this different description, we might assume
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In a similar way we can calculate the payoffs from all the other combinations of pure
strategies for each player (this would be useful practice for you if things still feel a
bit shaky mathematically). This results in the following matrix-form Bayesian game:

Player 2
cc cd dc dd

CC 0, 0 0, R
2 0, R

2 0, R

Player 1
CD R

2 , 0 3R
8 − H

4 , 3R
8 − H

4
3R
8 − H

4 , 3R
8 − L

4
R
4 − H

2 , 3R
4 − L

4 − H
4

DC R
2 , 0 3R

8 − L
4 , 3R

8 − H
4

3R
8 − L

4 , 3R
8 − L

4
R
4 − L

2 , 3R
4 − L

4 − H
4

DD R, 0 3R
4 − L

4 − H
4 , R

4 − H
2

3R
4 − L

4 − H
4 , R

4 − L
2

R
2 − L

2 − H
2 , R

2 − L
2 − H
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To solve for the Bayesian Nash equilibria we need to have more information about
the parameters R, H , and L. Assume that R = 8, H = 16, and L = 0, which results
in the following matrix-form game:

Player 2
cc cd dc dd

CC 0, 0 0, 4 0, 4 0, 8

Player 1
CD 4, 0 −1, −1 −1, 3 −6, 2

DC 4, 0 3, −1 3, 3 2, 2

DD 8, 0 2, −6 2, 2 −4, −4

A quick analysis reveals that the game has a unique pure-strategy Bayesian Nash
equilibrium: (DC, dc). That is, the children of lenient parents will continue driving
head on, while those of harsh parents will swerve to avoid the costly consequences. If
the payoffs we assumed are indeed representative of this situation then the view that
harsh upbringing yields better outcomes can be supported. Perhaps, however, children
of lenient parents learn somehow to respect their parents’ property (the car), while
children of harsh parents, despite anticipating the pain of a harsh punishment, do not
respect their parents’ property. In light of this different description, we might assume

当 , ,  时，此

博弈的⻉叶斯纳什均衡就是下⾯的

矩阵博弈中的纳什均衡 

R = 8 H = 16 L = 0

(DC, dc)



练习：⻉叶斯均衡

• 继续考虑胆⼩⻤博弈，并回答下列问题： 

1. 计算每个参与⼈的事中期望回报 
 
例如参与⼈ 1 在  时，策略组合 

 的事中期望回报是 
 

 

2. 找到 , ,  时的 
纯策略⻉叶斯均衡

θ1 = H
(CD, dd)

V1(CD, dd |H) = Eθ2[v1(CD, s2(θ2); H) ∣ H]
=

1
2 ( R

2
− H) +

1
2 ( R

2
− H)

=
R
2

− H

R = 8 H = 16 L = 0
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FIGURE 12.3 The game of chicken with incomplete information.

There is, however, a potential difference between these two youngsters: The
punishment, k, depends on the type of parents they have. For each kid, parents can be
either harsh (H ) or lenient (L) with equal probability, and the draws from Nature on
the types of parents are independently distributed. This means that the likelihood that
player i’s parents are harsh is equal to 1

2 and is independent of the type of parents that
player j has. If player i’s parents are harsh then they will beat the living daylights
out of their child, which imposes a high cost of an accident, denoted by k = H . If
instead the parents are lenient then they will give their child a long lecture on why
his behavior is unacceptable, which imposes a lower cost of an accident, denoted by
k = L < H . Each kid knows the type of his parents but does not know the type of
his opponent’s parents. The distribution of types is common knowledge (this is the
common prior assumption).

The extensive form of this game is depicted in Figure 12.3. There are four states
of Nature, θ1θ2 ∈ {LL, LH, HL, HH } that denote the types of player 1 and player
2, respectively, and each of these four states occurs with equal probability because of
the probability distributions described earlier. The structure of the information sets
follows from the knowledge of the players when they make their moves. Player 1,
for example, cannot distinguish between the states of Nature LL and LH (his type is
L), nor can he distinguish between HL and HH (his type is H ). However, he knows
what his own type is, and hence he can distinguish between these two pairs of states. A
similar logic explains the information sets of player 2. The action sets of each player
are A1 = {C, D} and A2 = {c, d}, where C (or c) stands for “chicken” and D (or d)
stands for “drive.”

From the extensive form in Figure 12.3 we can derive the matrix form as follows.
A strategy for player 1 is denoted by xy ∈ S1 = {CC, CD, DC, DD}, where x is
what he does if he is an L type and y is what he does if he is an H type. Similarly
S2 = {cc, cd, dc, dd}. The payoffs are calculated using the probabilities over the



课后阅读

• ⾃主学习书中第 12 章第 12.2.2 ⼩节
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