博弈论与信息经济学

7．不完全信息动态博亦

深圳大学经济学院 会计学学术学位硕士研究生 专业选修课（2023－2024）
主讲：黄嘉平 中国经济特区研究中心讲师 工学博士 经济学博士
办公室：粤海校区汇文楼1510 Email：huangjp＠szu．edu．cn

序贯理性与不完全信息

不完全信息市场进入博栾

－完全信息市场进入博弈：
－NE：$(O, F),(E, A)$
－SPE：(E, A)
－不完全信息市场进入博弈 （第15章）
－参与人 1 有两种类型：实力强 C 和实力弱 W
$-S_{1}=\{O O, O E, E O, E E\}$, $S_{2}=\{F, A\}$
－当 $p=0.5$ 时， BNE：$(O O, F),(E O, A)$

$p=0.5$ 时的期望回报矩阵

	F	A
	$\overline{0,2}$	$\overline{0,2}$
O	$\underline{0,2}$	$\overline{-\frac{1}{2}, \frac{3}{2}}$
	$-1,1$	$\underline{\overline{2}, \frac{3}{2}}$
$E O$	$-\frac{1}{2}, \frac{1}{2}$	$\overline{\frac{1}{2}}$
$E E$	$-\frac{3}{2},-\frac{1}{2}$	$\overline{0,1}$

FIGURE 15．2 An entry game with incomplete information．

子博亦完美均衡？

- 唯一的子博弈就是原博弈本身
- 因此，$(O O, F),(E O, A)$ 都是 SPE

－子博弈完美均衡在不完全信息动态博弈中可能无法给出更好的解
－这是因为，即使参与人 2 能观察参与人 1的行动，但是他不知道参与人 1 的类型，导致他的信息集包含多个行动节点

FIGURE 15．2 An entry game with incomplete information．

均衡路径

－在完全信息博弈中，纳什均衡只关注均衡路径上的最优反应，而子博弈完美均衡也关注均衡路径外的最优反应
－在不完全信息博亦中，我们需要对均衡路径的定义进行修正

令 $\sigma^{*}=\left(\sigma_{1}^{*}, \sigma_{2}^{*}, \ldots, \sigma_{n}^{*}\right)$ 为一个不完全信息博亦的贝叶斯纳什均衡。在给定均衡策略组合 σ^{*} 和参与人类型的先验分布下，如果到达一个信息集的概率为正，则称该信息集在均衡路径上；如果到达一个信息集的概率为零，则称该信息集偏离了均衡路径
－在前面的例子中，在均衡策略 $(E O, A)$ 和先验分布 $(p, 1-p)$ 下，到达参与人 1 的信息集 $\left\{x_{1}\right\}$和 $\left\{x_{2}\right\}$ 的概率分别为 p 和 $1-p$ ，到达参与人 2 的信息集 $\left\{x_{3}, x_{4}\right\}$ 的概率是 p（仅当参与人 1的类型为 C 时，他会选择进入市场 E ）
－如果参与人 1 的策略是 $O O$ ，则到达参与人 2 的信息集的概率为 0

信念

Beliefs

－为了将序贯理性的原则适用于贝叶斯纳什均衡，我们需要要求参与人在每个信息集都做选择最优反应。 \rightarrow 针对什么的最优反应？
－当信息集不是单点时，以该信息集中节点为根的部分博亦树不是子博亦，因此最优反应的对象不是对手的纯策略组合。我们需要定义参与人在自己信息集内部的信念

扩展式博弈中的信念系统（system of beliefs）μ 给每个信息集指定了一个概率分布。即针对每个信息集 $h \in H$ ，该信息集上的每个节点 $x \in h, \mu(x) \in[0,1]$ 给出了在该信息集行动的参与人认为自己身处节点 x 的概率。因此 $\sum_{x \in h} \mu(x)=1$ 对任意 h 成立
－在前面的例子中，参与人 2 的信息集中有两个节点 x_{3} 和 x_{4} ，因此 $\mu\left(x_{3}\right)+\mu\left(x_{4}\right)=1$ ，分别代表在参与人 1选择了 E 时，参与人 2 认为参与人 1 的类型是 C 和 W 的概率

均衡应满足的条件（一）

［R1］每个参与人在自己行动的每一个信息集都应该有正确定义的信念。即该博弈存在一个信念系统

- 那么，信念系统是可以任意定义的吗？
- 参与人的信念受策略组合（其他参与人的行动）和先验分布（＂自然＂的行动）的双重影响- 例如 $\mu\left(x_{3}\right)=\operatorname{Pr}\left[\theta_{1}=C \mid a_{1}=E\right]$ ，如果参与人 1 的策略是 $E O$ ，则 $\mu\left(x_{3}\right)=1$
- 如果参与人 1 的策略是＂当 $\theta_{1}=C$ 时以 σ_{C} 的概率选择 E ，当 $\theta_{1}=W$ 时以 σ_{W} 的概率选择 E＂，则

$$
\begin{aligned}
\mu\left(x_{3}\right) & =\operatorname{Pr}\left[\theta_{1}=C \mid a_{1}=E\right] \\
& =\frac{\operatorname{Pr}\left[\theta_{1}=C, a_{1}=E\right]}{\operatorname{Pr}\left[\theta_{1}=C, a_{1}=E\right]+\operatorname{Pr}\left[\theta_{1}=W, a_{1}=E\right]}=\frac{p \sigma_{C}}{p \sigma_{C}+(1-p) \sigma_{W}}
\end{aligned}
$$

［R2］给定任意贝叶斯纳什均衡，每一个在均衡路径上的信息集上的信念都应满足贝叶斯公式

均衡应满足的条件（二）

- 均衡路径外的信息集怎么办？
- 当参与人 1 选择策略 $O O$ 时（即 $\sigma_{C}=\sigma_{W}=0$ ），$\mu\left(x_{3}\right)=\frac{p \sigma_{C}}{p \sigma_{C}+(1-p) \sigma_{W}}=\frac{0}{0}$ ，因此无法通过贝叶斯公式定义参与人 2 的信息集上的信念（到达此信息集的概率为零）
［R3］对于偏离均衡路径的信息集，贝叶斯公式不适用，该信息集上的信念可以是任意概率分布
［R4］在给定一个信念系统时，参与人的策略应满足序贯理性原则。即在每一个信息集上，参与人都根据自己的信念针对后续策略选择最优反应：
具有信念 μ 的参与人 i 在信息集 h 时，其策略 σ_{i} 是 σ_{-i} 的最优反应的定义为 $\mathrm{E}_{\mu}\left[v_{i}\left(\sigma_{i}, \sigma_{-i} ; \theta_{i}\right) \mid h, \mu\right] \geq \mathrm{E}_{\mu}\left[v_{i}\left(s_{i}^{\prime}, \sigma_{-i} ; \theta_{i}\right) \mid h, \mu\right]$
－参与人 2 在自己的信息集时，
$-\mathrm{E}_{\mu}\left[v_{2}(E O, A) \mid \mu\right]=\mu\left(x_{3}\right) \times 1+\mu\left(x_{4}\right) \times 1=1, \mathrm{E}_{\mu}\left[v_{2}(E O, F) \mid \mu\right]=\mu\left(x_{3}\right) \times(-1)+\mu\left(x_{4}\right) \times 0=-1$ ，因此 A 是 $E O$ 的最优反应
$-\mathrm{E}_{\mu}\left[v_{2}(O O, F) \mid \mu\right]=\mu\left(x_{3}\right) \times(-1)+\mu\left(x_{4}\right) \times 0=-\mu\left(x_{3}\right), \mathrm{E}_{\mu}\left[v_{2}(O O, A) \mid \mu\right]=\mu\left(x_{3}\right) \times 1+\mu\left(x_{4}\right) \times 1=1$ ，因此 F 不是 $O O$ 的最优反应

完美贝叶斯均衡

Perfect Bayesian equilibrium

贝叶斯纳什均衡 $\sigma^{*}=\left(\sigma_{1}^{*}, \sigma_{2}^{*}, \ldots, \sigma_{n}^{*}\right)$ 和信念系统 μ 的组合 $\left(\sigma^{*}, \mu\right)$ 如果满足条件［R1］ ［R4］，则称其为完美贝叶斯均衡（perfect Bayesian equilibrium），简写为 PBE

- PBE 保证均衡满足序贯理性原则
- 如何找到 PBE？
- 首先找到全部 BNE
- 然后针对每一个 BNE，尝试寻找符合 PBN 的信念系统

定理：如果策略 $\sigma^{*}=\left(\sigma_{1}^{*}, \sigma_{2}^{*}, \ldots, \sigma_{n}^{*}\right)$ 是贝叶斯博亦 Γ 的贝叶斯纳什均衡，且在 σ^{*} 下到达任意信息集的概率都为正，则 σ^{*} 和先验分布 F 可以定义唯一的信念系统 μ^{*}（适用贝叶斯公式），并使 $\left(\sigma^{*}, \mu^{*}\right)$ 成为 Γ 的完美贝叶斯均衡

$$
p=0.5 \text { 时的期望回报矩阵 }
$$

- 纯策略 BNE：$(O O, F),(E O, A)$
- 已知在 $(O O, F)$ 下无法到达信息集 $\left\{x_{2}, x_{3}\right\}$ ，且对任意信念 $\left(\mu\left(x_{3}\right), \mu\left(x_{4}\right)\right) F$ 都不是参与人 2的最优反应
－在 $(E O, A)$ 下到达 $\left\{x_{2}, x_{3}\right\}$ 的概率为 $p=0.5$ ，且根据贝叶斯公式可得 $\mu\left(x_{3}\right)=1$

$$
\begin{aligned}
E_{\mu}\left[v_{2}(E O, A) \mid \mu\right] & =1, \\
E_{\mu}\left[v_{2}(E O, F) \mid \mu\right] & =-1,
\end{aligned}
$$

因此 A 是参与人 2 的最优反应
－纯策略 PBE：$s=(E O, A), \mu_{\left\{x_{3}, x_{4}\right\}}=(1,0)$

行为策略 BNE

－令参与人 1 的行为策略 σ_{1} 为：
$\left\{\begin{array}{l}\text { 在 } x_{1} \text { 时以 } \sigma_{C} \text { 的概率选择 } E \\ \text { 在 } x_{2} \text { 时以 } \sigma_{W} \text { 的概率选择 } E\end{array}\right.$
－令参与人 2 的行为策略 σ_{2} 为：
选择 A 的概率为 δ

－双方的事前期望回报

$$
\begin{aligned}
V_{1}\left(\sigma_{1}, \sigma_{2}\right) & =p\left[\left(1-\sigma_{C}\right) \cdot 0+\sigma_{C}(\delta \cdot 1+(1-\delta) \cdot(-1))\right]+(1-p)\left[\left(1-\sigma_{W}\right) \cdot 0+\sigma_{W}(\delta \cdot(-1)+(1-\delta) \cdot(-2))\right] \\
& =p \sigma_{C}(2 \delta-1)+(1-p) \sigma_{W}(\delta-2) \\
V_{2}\left(\sigma_{1}, \sigma_{2}\right) & =p\left[\left(1-\sigma_{C}\right) \cdot 2+\sigma_{C}(\delta \cdot 1+(1-\delta) \cdot(-1))\right]+(1-p)\left[\left(1-\sigma_{W}\right) \cdot 2+\sigma_{W}(\delta \cdot 1+(1-\delta) \cdot 0)\right] \\
& =p\left(2-3 \sigma_{C}\right)+2(1-p)\left(1-\sigma_{W}\right)+\left(2 p \sigma_{C}+(1-p) \sigma_{W}\right) \cdot \delta
\end{aligned}
$$

行为策略 BNE

－当 $p \in(0,1)$ 时，双方的最优反应对应为

$$
\begin{aligned}
& V_{1}\left(\sigma_{1}, \sigma_{2}\right)=p \sigma_{C}(2 \delta-1)+(1-p) \sigma_{W}(\delta-2) \\
& \Rightarrow \mathrm{BR}_{1}\left(\sigma_{2}\right)= \begin{cases}\sigma_{C}=1, \sigma_{W}=0 & \text { if } \delta>\frac{1}{2} \\
\sigma_{C} \in[0,1], \sigma_{W}=0 & \text { if } \delta=\frac{1}{2} \\
\sigma_{C}=0, \sigma_{W}=0 & \text { if } \delta<\frac{1}{2}\end{cases} \\
& V_{2}\left(\sigma_{1}, \sigma_{2}\right)=p\left(2-3 \sigma_{C}\right)+2(1-p)\left(1-\sigma_{W}\right)+\left(2 p \sigma_{C}+(1-p) \sigma_{W}\right) \cdot \delta \\
& \Rightarrow \mathrm{BR}_{2}\left(\sigma_{1}\right)= \begin{cases}\delta=1 & \text { if }\left(\sigma_{C}, \sigma_{W}\right) \neq(0,0) \\
\delta \in[0,1] & \text { if }\left(\sigma_{C}, \sigma_{W}\right)=(0,0)\end{cases}
\end{aligned}
$$

－可得 BNE 为：$\left(\sigma_{C}, \sigma_{W}, \delta\right)=(1,0,1),\left(\sigma_{C}, \sigma_{W}, \delta\right) \in\{(0,0, \delta): \delta \in[0,0.5]\}$

行为策略 PBE 仍为 $(E O, A)$ ，因为当参与人 1 选择 $O O$ 时，无法到达信息集 $\left\{x_{3}, x_{4}\right\}$ ，而在任意信念下，参与人 2 在 $\left\{x_{3}, x_{4}\right\}$ 的最优选择都是 A

$$
\text { 即 }(E O, A)
$$

练习：PBE

考虑右图中的博弈

1．纯策略 BNE
$-N=\{1,2\}, S_{1}=\{A, B, C\}, S_{2}=\{L, M, R\}$
－写出博弈矩阵，并找到纳什均衡

2．纯策略 PBE
－考虑参与人 2 在信息集 $\left\{x_{2}, x_{3}\right\}$ 的最优对应

3．混合策略 $s_{1}=\left(\frac{1}{2}, \frac{1}{2}, 0\right), s_{2}=\left(\frac{1}{2}, 0, \frac{1}{2}\right)$ 和信念 $\mu=\left(\frac{1}{2}, \frac{1}{2}\right)$ 能构成 PBE 吗？（课后练习）

