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7. 不完全信息动态博弈



序贯理性与不完全信息



不完全信息市场进⼊博弈

• 完全信息市场进⼊博弈：


- NE: , 


- SPE:  

• 不完全信息市场进⼊博弈 
（第15章）


- 参与⼈ 1 有两种类型： 
实⼒强  和实⼒弱 


- ,   



- 当  时， 
BNE: , 

(O, F) (E, A)

(E, A)

C W

S1 = {OO, OE, EO, EE}
S2 = {F, A}

p = 0.5
(OO, F) (EO, A)
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FIGURE 12.2 An incomplete-information entry game.

he gets from (Enter, Fight) is 2 instead of −1. The structure of the game is fixed by the
set of players N and the action spaces Ai for each player i ∈ N, yet Nature chooses
which type of player 2 is playing the game with player 1. To complete the structure of
this game we need to state the likelihood or probability of each type being selected by
Nature. Let p denote the probability that Nature chooses the rational type. We can now
depict the extensive form of this incomplete-information entry game in Figure 12.2.

Before being able to analyze this game, we must address the issue of what players
know when they play the game. Recall that our motivating examples were descriptions
of situations in which players were uncertain about the preferences of other players.
To discuss optimal behavior, we have to let the players maximize their payoffs given
their beliefs about the situation they are in, just as we did with the analysis of single-
person decisions and with games of complete information. Thus we must assume that
players know their own preferences, which in turn will allow us to analyze a player’s
best response given his assumptions about the behavior of his opponents. This is the
reason for the single information set in Figure 12.2, which shows that player 1 is
uncertain about the preferences of player 2, but player 2 knows what his preferences
are when he needs to make a decision.

A final issue still needs to be addressed. If players know their own preferences, but
they do not know the preferences or types of their opponents, then what must players
know in order for them to have a well-defined best response and in turn let us perform
equilibrium analysis? The natural step, as Harsanyi realized, is to require players to
form correct beliefs about the preferences and types of their opponents. This in turn
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FIGURE 15.2 An entry game with incomplete information.

The payoffs are different for each realization of player 1’s type, and they are given
in the extensive form of the game in Figure 15.2.

When considering the normal form of this game, player 1 has four pure strategies
that follow from the fact that a strategy for him is a type-dependent action, and there
are two types and two actions. We define a strategy for player 1 as s1 = sC

1 sW
1 , where

s
θ1
1 ∈ {O, E} is what a type θ1 of player 1 chooses. Thus the pure-strategy set of

player 1 is

s1 ∈ S1 = {OO, OE, EO, EE}.

For example, s1 = OE means that player 1 chooses O when his type is C, and he
chooses E when his type is W . Because player 2 has only one information set that
follows entry, and two actions in that information set, he has two pure strategies,
s2 ∈ {A, F }.

To convert this extensive-form game to a normal-form matrix game, we need to
compute the expected payoffs from each pair of pure strategies, where expectations are
over the randomizations caused by Nature. Because player 1 has four pure strategies
and player 2 has two, there will be eight entries in the normal-form matrix. For
example, consider the pair of strategies (s1, s2) = (OE, A). The payoffs of the game
will be determined by one of the following two outcomes:

1. Nature chooses θ1 = C, in which case player 1 plays O and the payoffs are
(0, 2). This happens with probability Pr{θ1 = C} = p.

2. Nature chooses θ1 = W , in which case player 1 plays E and player 2 plays A.
The payoffs for this outcome are (−1, 1), and this happens with probability
Pr{θ1 = W } = 1 − p.

From these two possible outcomes we can compute the expected payoffs for
players 1 and 2 as follows:

Ev1 = p × 0 + (1 − p) × (−1) = p − 1

Ev2 = p × 2 + (1 − p) × (1) = 1 − p.
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FIGURE 15.1 A simple entry game.

potential entrant to an industry that has a monopolistic incumbent, player 2. If player
1 stays out (O) then the incumbent earns a profit of 2, while the potential entrant gets
0. The entrant’s other option is to enter (E), which gives the incumbent a chance to
respond. If the incumbent chooses to accommodate entry (A), then both the entrant
and the incumbent receive a payoff of 1. The incumbent’s other option is to fight
entry (F ), in which case the payoff for each player is −1. The extensive form of this
game is described in Figure 15.1. To find the Nash equilibria of this game it is useful
to look at its matrix form as follows:

F A

O 0, 2 0, 2

E −1, −1 1, 1

A quick observation reveals that the game has two pure-strategy Nash equilibria,
which are (O, F ) and (E, A). If, however, we consider the subgame-perfect equi-
librium concept, backward induction clearly implies that following player 1’s choice
of entering, player 2 will strictly prefer to accommodate entry. Therefore player 1
should enter, anticipating a payoff of 1 rather than staying out and receiving 0. Thus
subgame perfection implies sequential rationality and picks only one of the two Nash
equilibria as the unique subgame-perfect equilibrium, (E, A), in which firm 1 enters
and firm 2 accommodates entry.

Now consider a straightforward variant of this game that includes incomplete
information. In particular imagine that the entrant may have a technology that is as
good as that of the incumbent, in which case the game above describes the payoffs.
However, the entrant may also have an inferior technology, in which case he would not
gain by entering and the incumbent would lose less if fighting occurred. A particular
case of this story can be captured by the following sequence of events:

1. Nature chooses the entrant’s type, which can be weak (W ) or competitive (C),
so that θ1 ∈ {W, C}, and let Pr{θ1 = C} = p. The entrant knows his type but
the incumbent knows only the probability distribution over types.

2. The entrant chooses between E and O as before, and the incumbent observes
the entrant’s choice.

3. After observing the action of the entrant, and if the entrant enters, the incum-
bent can choose between A and F as before.
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Similarly if the strategies are (s1, s2) = (EE, F ) then the expected payoffs for players
1 and 2 are

Ev1 = p × (−1) + (1 − p) × (−2) = p − 2

Ev2 = p × (−1) + (1 − p) × 0 = −p.

In this way we can complete the matrix and obtain the representation for this Bayesian
game of incomplete information. To actually compute expected payoffs, set p = 0.5,
in which case the matrix representation of the Bayesian game is as follows:

Player 2
F A

OO 0, 2 0, 2

Player 1
OE −1, 1 − 1

2 ,
3
2

EO − 1
2 ,

1
2

1
2 ,

3
2

EE − 3
2 , − 1

2 0, 1

Following our analysis in Chapter 12, it is easy to find the pure-strategy Bayesian
Nash equilibria: every Nash equilibrium of the matrix we have just calculated is
a Bayesian Nash equilibrium of the Bayesian game. Therefore both (OO, F) and
(EO, A) are pure-strategy Bayesian Nash equilibria of the Bayesian game.1

Interestingly these two Bayesian Nash equilibria are tightly related to the two
Nash equilibria of the complete-information game in Figure 15.1. The equilibrium
(OO, F) is one in which the incumbent “threatens” to fight, which causes the entrant
to stay out regardless of his type, similar to the (O, F ) equilibrium in the game of
complete information in Figure 15.1. The equilibrium (EO, A) is one in which the
incumbent accommodates entry, which causes the strong entrant to enter (getting 1
instead of 0) and the weak entrant to stay out (getting 0 instead of −1), similar to the
(E, A) equilibrium in the game in Figure 15.1.

Not only are the equilibria similar, but there is a similar problem of credibility with
the equilibrium (OO, F): player 2 threatens to fight, but if he finds himself in the in-
formation set that follows entry, he has a strict best response, which is to accommodate
entry. Thus the Bayesian Nash equilibrium (OO, F) involves noncredible behavior
of player 2 that is not sequentially rational.

Now comes the interesting question: which of these two equilibria survives as a
subgame-perfect equilibrium in the extensive-form game? Recall that the definition
of a subgame-perfect equilibrium is that in every proper subgame, the restriction of
the strategies to that subgame must be a Nash equilibrium in the subgame. This, as we
saw in Chapter 8, means that players are playing mutual best responses both on and
off the equilibrium path. However, looking at the extensive-form game in Figure 15.2,
it is easy to see that there is only one proper subgame, which is the complete game.
Therefore, both (OO, F) and (EO, A) survive as subgame-perfect equilibria.

1. Notice that for player 1 OE is strictly dominated by OO and EE is strictly dominated by EO.Notice
also that there are a continuum of mixed-strategy Bayesian Nash equilibria in which the incumbent
plays F with probability p ≥ 1

2 and the entrant plays OO.There cannot be a mixed-strategy Bayesian
Nash equilibrium in which the entrant mixes between OO and EO because then the incumbent’s best
response is A, in which case the entrant would strictly prefer to play EO over OO.

不可信

 时的期望回报矩阵p = 0.5



⼦博弈完美均衡？

• 唯⼀的⼦博弈就是原博弈本身


• 因此， ,  都是 SPE


• ⼦博弈完美均衡在不完全信息动态博弈 
中可能⽆法给出更好的解


- 这是因为，即使参与⼈ 2 能观察参与⼈ 1  
的⾏动，但是他不知道参与⼈ 1 的类型， 
导致他的信息集包含多个⾏动节点

(OO, F) (EO, A)

4
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FIGURE 15.2 An entry game with incomplete information.

The payoffs are different for each realization of player 1’s type, and they are given
in the extensive form of the game in Figure 15.2.

When considering the normal form of this game, player 1 has four pure strategies
that follow from the fact that a strategy for him is a type-dependent action, and there
are two types and two actions. We define a strategy for player 1 as s1 = sC

1 sW
1 , where

s
θ1
1 ∈ {O, E} is what a type θ1 of player 1 chooses. Thus the pure-strategy set of

player 1 is

s1 ∈ S1 = {OO, OE, EO, EE}.

For example, s1 = OE means that player 1 chooses O when his type is C, and he
chooses E when his type is W . Because player 2 has only one information set that
follows entry, and two actions in that information set, he has two pure strategies,
s2 ∈ {A, F }.

To convert this extensive-form game to a normal-form matrix game, we need to
compute the expected payoffs from each pair of pure strategies, where expectations are
over the randomizations caused by Nature. Because player 1 has four pure strategies
and player 2 has two, there will be eight entries in the normal-form matrix. For
example, consider the pair of strategies (s1, s2) = (OE, A). The payoffs of the game
will be determined by one of the following two outcomes:

1. Nature chooses θ1 = C, in which case player 1 plays O and the payoffs are
(0, 2). This happens with probability Pr{θ1 = C} = p.

2. Nature chooses θ1 = W , in which case player 1 plays E and player 2 plays A.
The payoffs for this outcome are (−1, 1), and this happens with probability
Pr{θ1 = W } = 1 − p.

From these two possible outcomes we can compute the expected payoffs for
players 1 and 2 as follows:

Ev1 = p × 0 + (1 − p) × (−1) = p − 1

Ev2 = p × 2 + (1 − p) × (1) = 1 − p.



均衡路径

• 在完全信息博弈中，纳什均衡只关注均衡路径上的最优反应，⽽⼦博弈完美均衡也关注均衡路
径外的最优反应


• 在不完全信息博弈中，我们需要对均衡路径的定义进⾏修正 

令  为⼀个不完全信息博弈的⻉叶斯纳什均衡。在给定均衡策略组合  和参与
⼈类型的先验分布下，如果到达⼀个信息集的概率为正，则称该信息集在均衡路径上；如果到达⼀
个信息集的概率为零，则称该信息集偏离了均衡路径 

• 在前⾯的例⼦中，在均衡策略  和先验分布  下， 到达参与⼈ 1 的信息集  
和  的概率分别为  和 ，到达参与⼈ 2 的信息集  的概率是  （仅当参与⼈ 1 
的类型为  时，他会选择进⼊市场 ）


• 如果参与⼈ 1 的策略是 ，则到达参与⼈ 2 的信息集的概率为 

σ* = (σ*1 , σ*2 , …, σ*n ) σ*

(EO, A) (p, 1 − p) {x1}
{x2} p 1 − p {x3, x4} p

C E

OO 0
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信念
Beliefs

• 为了将序贯理性的原则适⽤于⻉叶斯纳什均衡，我们需要要求参与⼈在每个信息集都做选择最优反
应。  针对什么的最优反应？


• 当信息集不是单点时，以该信息集中节点为根的部分博弈树不是⼦博弈，因此最优反应的对象不是对
⼿的纯策略组合。我们需要定义参与⼈在⾃⼰信息集内部的信念 

扩展式博弈中的信念系统（system of beliefs）  给每个信息集指定了⼀个概率分布。即针对每个信息
集 ，该信息集上的每个节点 ，  给出了在该信息集⾏动的参与⼈认为⾃⼰身处节点 
 的概率。因此  对任意  成⽴ 

• 在前⾯的例⼦中，参与⼈ 2 的信息集中有两个节点 
 和 ，因此 ，分别代表在参与⼈ 1  

选择了  时，参与⼈ 2 认为参与⼈ 1 的类型是  和 
 的概率

→

μ
h ∈ H x ∈ h μ(x) ∈ [0,1]

x ∑x∈h μ(x) = 1 h

x3 x4 μ(x3) + μ(x4) = 1
E C

W

6
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The payoffs are different for each realization of player 1’s type, and they are given
in the extensive form of the game in Figure 15.2.

When considering the normal form of this game, player 1 has four pure strategies
that follow from the fact that a strategy for him is a type-dependent action, and there
are two types and two actions. We define a strategy for player 1 as s1 = sC

1 sW
1 , where

s
θ1
1 ∈ {O, E} is what a type θ1 of player 1 chooses. Thus the pure-strategy set of

player 1 is

s1 ∈ S1 = {OO, OE, EO, EE}.

For example, s1 = OE means that player 1 chooses O when his type is C, and he
chooses E when his type is W . Because player 2 has only one information set that
follows entry, and two actions in that information set, he has two pure strategies,
s2 ∈ {A, F }.

To convert this extensive-form game to a normal-form matrix game, we need to
compute the expected payoffs from each pair of pure strategies, where expectations are
over the randomizations caused by Nature. Because player 1 has four pure strategies
and player 2 has two, there will be eight entries in the normal-form matrix. For
example, consider the pair of strategies (s1, s2) = (OE, A). The payoffs of the game
will be determined by one of the following two outcomes:

1. Nature chooses θ1 = C, in which case player 1 plays O and the payoffs are
(0, 2). This happens with probability Pr{θ1 = C} = p.

2. Nature chooses θ1 = W , in which case player 1 plays E and player 2 plays A.
The payoffs for this outcome are (−1, 1), and this happens with probability
Pr{θ1 = W } = 1 − p.

From these two possible outcomes we can compute the expected payoffs for
players 1 and 2 as follows:

Ev1 = p × 0 + (1 − p) × (−1) = p − 1

Ev2 = p × 2 + (1 − p) × (1) = 1 − p.



均衡应满⾜的条件（⼀）

[R1]  每个参与⼈在⾃⼰⾏动的每⼀个信息集都应该有正确定义的信念。即该博弈存在⼀个信念系统 

• 那么，信念系统是可以任意定义的吗？


- 参与⼈的信念受策略组合（其他参与⼈的⾏动）和先验分布（“⾃然”的⾏动）的双重影响


- 例如 ，如果参与⼈ 1 的策略是 ，则 


- 如果参与⼈ 1 的策略是“当  时以  的概率选择 ，当  时以  的概率选择 ”，则 
 

	  

[R2]  给定任意⻉叶斯纳什均衡，每⼀个在均衡路径上的信息集上的信念都应满⾜⻉叶斯公式

μ(x3) = Pr[θ1 = C ∣ a1 = E] EO μ(x3) = 1

θ1 = C σC E θ1 = W σW E

μ(x3) = Pr[θ1 = C ∣ a1 = E]

=
Pr[θ1 = C, a1 = E]

Pr[θ1 = C, a1 = E] + Pr[θ1 = W, a1 = E]
=

pσC

pσC + (1 − p)σW

7

这是⼀个⾏为策略



均衡应满⾜的条件（⼆）

• 均衡路径外的信息集怎么办？


- 当参与⼈ 1 选择策略  时（即 ）， ，因此⽆法通过⻉叶斯公式定义参与⼈ 2 的信息

集上的信念（到达此信息集的概率为零） 

[R3]  对于偏离均衡路径的信息集，⻉叶斯公式不适⽤，该信息集上的信念可以是任意概率分布 

[R4]  在给定⼀个信念系统时，参与⼈的策略应满⾜序贯理性原则。即在每⼀个信息集上，参与⼈都根据⾃⼰的信念针
对后续策略选择最优反应： 
 

具有信念  的参与⼈  在信息集  时，其策略  是  的最优反应的定义为   

• 参与⼈ 2 在⾃⼰的信息集时，


- ,  ，因此  是  的最优反应


- ,  ，因此  不是  的最优反应

OO σC = σW = 0 μ(x3) =
pσC

pσC + (1 − p)σW
=

0
0

μ i h σi σ−i Eμ[vi(σi, σ−i; θi) ∣ h, μ] ≥ Eμ[vi(s′￼i, σ−i; θi) ∣ h, μ]

Eμ[v2(EO, A) ∣ μ] = μ(x3) × 1 + μ(x4) × 1 = 1 Eμ[v2(EO, F) ∣ μ] = μ(x3) × (−1) + μ(x4) × 0 = − 1 A EO

Eμ[v2(OO, F) ∣ μ] = μ(x3) × (−1) + μ(x4) × 0 = − μ(x3) Eμ[v2(OO, A) ∣ μ] = μ(x3) × 1 + μ(x4) × 1 = 1 F OO

8



完美⻉叶斯均衡
Perfect Bayesian equilibrium

⻉叶斯纳什均衡  和信念系统  的组合  如果满⾜条件 [R1]～
[R4]，则称其为完美⻉叶斯均衡（perfect Bayesian equilibrium），简写为 PBE 

• PBE 保证均衡满⾜序贯理性原则


• 如何找到 PBE？


- ⾸先找到全部 BNE


- 然后针对每⼀个 BNE，尝试寻找符合 PBN 的信念系统 

定理：如果策略  是⻉叶斯博弈  的⻉叶斯纳什均衡，且在  下到达任
意信息集的概率都为正，则  和先验分布  可以定义唯⼀的信念系统  （适⽤⻉叶斯公
式），并使  成为  的完美⻉叶斯均衡

σ* = (σ*1 , σ*2 , …, σ*n ) μ (σ*, μ)

σ* = (σ*1 , σ*2 , …, σ*n ) Γ σ*
σ* F μ*

(σ*, μ*) Γ

9



• 纯策略 BNE： , 


• 已知在  下⽆法到达 
信息集 ，且对任意信念 

  都不是参与⼈ 2  
的最优反应


• 在  下到达  的概 
率为 ，且根据⻉叶斯公 
式可得  
 
	 ,  
	 , 
 
因此  是参与⼈ 2 的最优反应


• 纯策略 PBE： , 

(OO, F) (EO, A)

(OO, F)
{x2, x3}

(μ(x3), μ(x4)) F

(EO, A) {x2, x3}
p = 0.5

μ(x3) = 1

Eμ[v2(EO, A) ∣ μ] = 1
Eμ[v2(EO, F) ∣ μ] = − 1

A

s = (EO, A) μ{x3,x4} = (1, 0)

10
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Similarly if the strategies are (s1, s2) = (EE, F ) then the expected payoffs for players
1 and 2 are

Ev1 = p × (−1) + (1 − p) × (−2) = p − 2

Ev2 = p × (−1) + (1 − p) × 0 = −p.

In this way we can complete the matrix and obtain the representation for this Bayesian
game of incomplete information. To actually compute expected payoffs, set p = 0.5,
in which case the matrix representation of the Bayesian game is as follows:

Player 2
F A

OO 0, 2 0, 2

Player 1
OE −1, 1 − 1

2 ,
3
2

EO − 1
2 ,

1
2

1
2 ,

3
2

EE − 3
2 , − 1

2 0, 1

Following our analysis in Chapter 12, it is easy to find the pure-strategy Bayesian
Nash equilibria: every Nash equilibrium of the matrix we have just calculated is
a Bayesian Nash equilibrium of the Bayesian game. Therefore both (OO, F) and
(EO, A) are pure-strategy Bayesian Nash equilibria of the Bayesian game.1

Interestingly these two Bayesian Nash equilibria are tightly related to the two
Nash equilibria of the complete-information game in Figure 15.1. The equilibrium
(OO, F) is one in which the incumbent “threatens” to fight, which causes the entrant
to stay out regardless of his type, similar to the (O, F ) equilibrium in the game of
complete information in Figure 15.1. The equilibrium (EO, A) is one in which the
incumbent accommodates entry, which causes the strong entrant to enter (getting 1
instead of 0) and the weak entrant to stay out (getting 0 instead of −1), similar to the
(E, A) equilibrium in the game in Figure 15.1.

Not only are the equilibria similar, but there is a similar problem of credibility with
the equilibrium (OO, F): player 2 threatens to fight, but if he finds himself in the in-
formation set that follows entry, he has a strict best response, which is to accommodate
entry. Thus the Bayesian Nash equilibrium (OO, F) involves noncredible behavior
of player 2 that is not sequentially rational.

Now comes the interesting question: which of these two equilibria survives as a
subgame-perfect equilibrium in the extensive-form game? Recall that the definition
of a subgame-perfect equilibrium is that in every proper subgame, the restriction of
the strategies to that subgame must be a Nash equilibrium in the subgame. This, as we
saw in Chapter 8, means that players are playing mutual best responses both on and
off the equilibrium path. However, looking at the extensive-form game in Figure 15.2,
it is easy to see that there is only one proper subgame, which is the complete game.
Therefore, both (OO, F) and (EO, A) survive as subgame-perfect equilibria.

1. Notice that for player 1 OE is strictly dominated by OO and EE is strictly dominated by EO.Notice
also that there are a continuum of mixed-strategy Bayesian Nash equilibria in which the incumbent
plays F with probability p ≥ 1

2 and the entrant plays OO.There cannot be a mixed-strategy Bayesian
Nash equilibrium in which the entrant mixes between OO and EO because then the incumbent’s best
response is A, in which case the entrant would strictly prefer to play EO over OO.

 时的期望回报矩阵p = 0.5
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FIGURE 15.2 An entry game with incomplete information.

The payoffs are different for each realization of player 1’s type, and they are given
in the extensive form of the game in Figure 15.2.

When considering the normal form of this game, player 1 has four pure strategies
that follow from the fact that a strategy for him is a type-dependent action, and there
are two types and two actions. We define a strategy for player 1 as s1 = sC

1 sW
1 , where

s
θ1
1 ∈ {O, E} is what a type θ1 of player 1 chooses. Thus the pure-strategy set of

player 1 is

s1 ∈ S1 = {OO, OE, EO, EE}.

For example, s1 = OE means that player 1 chooses O when his type is C, and he
chooses E when his type is W . Because player 2 has only one information set that
follows entry, and two actions in that information set, he has two pure strategies,
s2 ∈ {A, F }.

To convert this extensive-form game to a normal-form matrix game, we need to
compute the expected payoffs from each pair of pure strategies, where expectations are
over the randomizations caused by Nature. Because player 1 has four pure strategies
and player 2 has two, there will be eight entries in the normal-form matrix. For
example, consider the pair of strategies (s1, s2) = (OE, A). The payoffs of the game
will be determined by one of the following two outcomes:

1. Nature chooses θ1 = C, in which case player 1 plays O and the payoffs are
(0, 2). This happens with probability Pr{θ1 = C} = p.

2. Nature chooses θ1 = W , in which case player 1 plays E and player 2 plays A.
The payoffs for this outcome are (−1, 1), and this happens with probability
Pr{θ1 = W } = 1 − p.

From these two possible outcomes we can compute the expected payoffs for
players 1 and 2 as follows:

Ev1 = p × 0 + (1 − p) × (−1) = p − 1

Ev2 = p × 2 + (1 − p) × (1) = 1 − p.



⾏为策略 BNE

• 令参与⼈ 1 的⾏为策略  为： 
 

	  

• 令参与⼈ 2 的⾏为策略  为： 
 

	 选择  的概率为   

• 双⽅的事前期望回报 
 

     

 

    

σ1

{
在 x1 时以 σC 的概率选择 E
在 x2 时以 σW 的概率选择 E

σ2

A δ

V1(σ1, σ2) = p[(1 − σC) ⋅ 0 + σC(δ ⋅ 1 + (1 − δ) ⋅ (−1))] + (1 − p)[(1 − σW) ⋅ 0 + σW(δ ⋅ (−1) + (1 − δ) ⋅ (−2))]
= pσC(2δ − 1) + (1 − p)σW(δ − 2)

V2(σ1, σ2) = p[(1 − σC) ⋅ 2 + σC(δ ⋅ 1 + (1 − δ) ⋅ (−1))] + (1 − p)[(1 − σW) ⋅ 2 + σW(δ ⋅ 1 + (1 − δ) ⋅ 0)]
= p(2 − 3σC) + 2(1 − p)(1 − σW) + (2pσC + (1 − p)σW) ⋅ δ
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and player 2 has two, there will be eight entries in the normal-form matrix. For
example, consider the pair of strategies (s1, s2) = (OE, A). The payoffs of the game
will be determined by one of the following two outcomes:

1. Nature chooses θ1 = C, in which case player 1 plays O and the payoffs are
(0, 2). This happens with probability Pr{θ1 = C} = p.

2. Nature chooses θ1 = W , in which case player 1 plays E and player 2 plays A.
The payoffs for this outcome are (−1, 1), and this happens with probability
Pr{θ1 = W } = 1 − p.

From these two possible outcomes we can compute the expected payoffs for
players 1 and 2 as follows:

Ev1 = p × 0 + (1 − p) × (−1) = p − 1

Ev2 = p × 2 + (1 − p) × (1) = 1 − p.



⾏为策略 BNE

• 当  时，双⽅的最优反应对应为 
 
     
 

	    

 
     
 

	    

• 可得 BNE 为： ,    

p ∈ (0,1)

V1(σ1, σ2) = pσC(2δ − 1) + (1 − p)σW(δ − 2)

⇒ BR1(σ2) =

σC = 1,σW = 0  if δ > 1
2

σC ∈ [0,1], σW = 0  if δ = 1
2

σC = 0,σW = 0  if δ < 1
2

V2(σ1, σ2) = p(2 − 3σC) + 2(1 − p)(1 − σW) + (2pσC + (1 − p)σW) ⋅ δ

⇒ BR2(σ1) = {δ = 1  if (σC, σW) ≠ (0,0)
δ ∈ [0,1]  if (σC, σW) = (0,0)

(σC, σW, δ) = (1, 0, 1) (σC, σW, δ) ∈ {(0, 0, δ) : δ ∈ [0, 0.5]}
12

即 (EO, A) 包含 (OO, F)

⾏为策略 PBE 仍为 ，

因为当参与⼈ 1 选择  时， 
⽆法到达信息集  ，⽽ 
在任意信念下，参与⼈ 2 在 

 的最优选择都是 

(EO, A)
OO

{x3, x4}

{x3, x4} A

δ

σC

σW

1

1

1

0
BR1

BR2



练习：PBE

考虑右图中的博弈


1. 纯策略 BNE


- , , 


- 写出博弈矩阵，并找到纳什均衡 

2. 纯策略 PBE


- 考虑参与⼈ 2 在信息集  的最优对应 

3. 混合策略 ,  和信念  能构成 PBE 吗？（课后练
习）

N = {1,2} S1 = {A, B, C} S2 = {L, M, R}

{x2, x3}

s1 = ( 1
2 , 1

2 , 0) s2 = ( 1
2 , 0, 1

2 ) μ = ( 1
2 , 1

2 )
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15.4 Summary

. Because games of incomplete information have information sets that are
associated with Nature’s choices of types, it will often be the case that the
only proper subgame is the whole game. As a consequence, subgame-perfect
equilibrium will rarely restrict the set of Bayesian Nash equilibria to those
that are sequentially rational.

. By requiring that players form beliefs in every information set, and requiring
these beliefs to be consistent with Bayes’ rule, we can apply the concept of
sequential rationality to Bayesian games.

. In a perfect Bayesian equilibrium, beliefs are constrained on the equilibrium
path but not off the equilibrium path. It is important, however, that beliefs off
the equilibrium path support equilibrium behavior.

. In some games the concept of perfect Bayesian equilibrium will not rule
out play that seems sequentially irrational. Equilibrium refinements, such as
sequential equilibrium, have been developed to address these situations.

15.5 Exercises

15.1 Equilibrium Selection: Consider the extensive-form game in Figure 15.5.

a. Find all the Bayesian Nash equilibria of this game.
b. Which of the Bayesian Nash equilibria are also perfect Bayesian equi-

libria? Why?

15.2 Not All That Glitters Revisited: Recall exercise 12.5 in Chapter 12 and
your analysis of the unique Bayesian Nash equilibrium for that game. The
secretary of commerce is contemplating the introduction of a certification
program. This will allow a prospector to get a certificate that exactly states
and publicizes the amount of gold in the mine and eliminates the problem
of asymmetric information. If the program is implemented the game would
be modified as follows: The prospector first decides whether or not to get
a government certificate and then decides for what price to ask. Thus each
type x chooses a pair (y(x), p(y)), where y(x) ∈ {N, x} denotes his choice
of certificate (N for no certificate and x for the true value on the certificate)
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FIGURE 15.5 Exercise 15.1.


