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A P P E N D I X  A

§
Matrix algebra

A.1 TERMINOLOGY

a matrix is a rectangular array of numbers, denoted

 A = [aik] = [A]ik = D a11 a12 g a1K

a21 a22 g a2K

g
an1 an2 g anK

T . (A-1)

the typical element is used to denote the matrix. a subscripted element of a matrix is 
always read as arow, column. an example is given in table a.1. in these data, the rows are 
identified with years and the columns with particular variables.

a vector is an ordered set of numbers arranged either in a row or a column. in view 
of the preceding, a row vector is also a matrix with one row, whereas a column vector 
is a matrix with one column. thus, in table a.1, the five variables observed for 1972 
(including the date) constitute a row vector, whereas the time series of nine values for 
consumption is a column vector.

a matrix can also be viewed as a set of column vectors or as a set of row vectors.1 
the dimensions of a matrix are the numbers of rows and columns it contains. “A is an 
n * K matrix” (read “n by K”) will always mean that A has n rows and K columns. if 
n equals K, then A is a square matrix. Several particular types of square matrices occur 
frequently in econometrics.

●● a symmetric matrix is one in which aik = aki for all i and k.
●● a diagonal matrix is a square matrix whose only nonzero elements appear on the 

main diagonal, that is, moving from upper left to lower right.
●● a scalar matrix is a diagonal matrix with the same value in all diagonal elements.
●● an identity matrix is a scalar matrix with ones on the diagonal. this matrix is always 

denoted I. a subscript is sometimes included to indicate its size, or order. For 
example, I4 indicates a 4 * 4 identity matrix. the scalar 1 is a 1 * 1 identity matrix.

●● a triangular matrix is one that has only zeros either above or below the main 
diagonal. if the zeros are above the diagonal, the matrix is lower triangular.

1Henceforth, we shall denote a matrix by a boldfaced capital letter, as is A in (a-1), and a vector as a 
boldfaced lowercase letter, as in a. Unless otherwise noted, a vector will always be assumed to be a 
column vector.
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Column

Row
1

Year

2
Consumption 

 (billions of dollars)

3
GNP  

(billions of dollars)
4

GNP Deflator

5
Discount Rate  

(N.Y Fed., avg.)

1 1972 737.1 1185.9 1.0000 4.50
2 1973 812.0 1326.4 1.0575 6.44
3 1974 808.1 1434.2 1.1508 7.83
4 1975 976.4 1549.2 1.2579 6.25
5 1976 1084.3 1718.0 1.3234 5.50
6 1977 1204.4 1918.3 1.4005 5.46
7 1978 1346.5 2163.9 1.5042 7.46
8 1979 1507.2 2417.8 1.6342 10.28
9 1980 1667.2 2633.1 1.7864 11.77

Source: Data from the Economic Report of the President (Washington, D.C.: U.S. Government Printing Office, 1983).

TABLE A.1 Matrix of Macroeconomic Data

A.2 ALGEBRAIC MANIPULATION OF MATRICES

A.2.1  EQUALITY OF MATRICES

Matrices (or vectors) A and B are equal if and only if they have the same dimensions 
and each element of A equals the corresponding element of B. that is,

 A = B if and only if aik = bik for all i and k. (A-2)

A.2.2  TRANSPOSITION

the transpose of a matrix A, denoted A′, is obtained by creating the matrix whose kth 
row is the kth column of the original matrix.2 thus, if B = A′, then each column of A 
will appear as the corresponding row of B. if A is n * K, then A′ is K * n.

an equivalent definition of the transpose of a matrix is

 B = A′ 3 bik = aki for all i and k. (A-3)

the definition of a symmetric matrix implies that

 if (and only if) A is symmetric, then A = A′. (A-4)

it also follows from the definition that for any A,

 (A′)′ = A. (A-5)

Finally, the transpose of a column vector, a, is a row vector:

a′ = [a1 a2 g an].

2authors sometimes denote the transpose of a matrix with a superscript “t,” as in At = the transpose of A. 
We will use the prime notation throughout this book .
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A.2.3  VECTORIZATION

in some derivations and analyses, it is occasionally useful to reconfigure a matrix into a 
vector (rarely the reverse). the matrix function Vec(A) takes the columns of an n *  K 

matrix and rearranges them in a long nK *  1 vector. thus, VecJ1 2
2 4

R = [1, 2, 2, 4]′. 

a related operation is the half vectorization, which collects the lower triangle of a 

symmetric matrix in a column vector. For example, VechJ1 2
2 4

R = C1
2
4
S .

A.2.4  MATRIX ADDITION

the operations of addition and subtraction are extended to matrices by defining

 C = A + B = [aik + bik], (A-6)

A - B = [aik - bik]. (A-7)

Matrices cannot be added unless they have the same dimensions, in which case they are 
said to be conformable for addition. a zero matrix or null matrix is one whose elements 
are all zero. in the addition of matrices, the zero matrix plays the same role as the scalar 0 
in scalar addition; that is,

 A + 0 = A. (A-8)

it follows from (a-6) that matrix addition is commutative,

 A + B = B + A. (A-9)

and associative,

 (A + B) + C = A + (B + C), (A-10)

and that

 (A + B)′ = A′ + B′. (A-11)

A.2.5  VECTOR MULTIPLICATION

Matrices are multiplied by using the inner product. the inner product, or dot product, 
of two vectors, a and b, is a scalar and is written

 a′b = a1b1 + a2b2 + g + anbn = Σj = 1
n ajbj. (A-12)

Note that the inner product is written as the transpose of vector a times vector b, a row 
vector times a column vector. in (a-12), each term ajbj equals bjaj; hence

 a′b = b′a. (A-13)

A.2.6  A NOTATION FOR ROWS AND COLUMNS OF A MATRIX

We need a notation for the ith row of a matrix. throughout this book, an untransposed 
vector will always be a column vector. However, we will often require a notation for the 
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column vector that is the transpose of a row of a matrix. this has the potential to create 
some ambiguity, but the following convention based on the subscripts will suffice for 
our work throughout this text:

●● ak, or al or am will denote column k, l, or m of the matrix A,
●● ai, or aj or at or as will denote the column vector formed by the

transpose of row i, j, t, or s of matrix A. thus, ai
= is row i of A. 

(A-14)

For example, from the data in table a.1 it might be convenient to speak of xi, where 
i = 1972 as the 5 * 1 vector containing the five variables measured for the year 1972, 
that is, the transpose of the 1972 row of the matrix. in our applications, the common 
association of subscripts “i” and “j” with individual i or j, and “t” and “s” with time 
periods t and s will be natural.

A.2.7  MATRIX MULTIPLICATION AND SCALAR MULTIPLICATION

For an n * K matrix A and a K * M matrix B, the product matrix, C = AB, is an 
n * M matrix whose ikth element is the inner product of row i of A and column k of B. 
thus, the product matrix C is

 C = AB 1 cik = ai
=bk. (A-15)

[Note our use of (a-14) in (a-15).] to multiply two matrices, the number of columns in 
the first must be the same as the number of rows in the second, in which case they are 
conformable for multiplication.3 Multiplication of matrices is generally not commutative. 
in some cases, AB may exist, but BA may be undefined or, if it does exist, may have 
different dimensions. in general, however, even if AB and BA do have the same 
dimensions, they will not be equal. in view of this, we define premultiplication and 
postmultiplication of matrices. in the product AB, B is premultiplied by A, whereas A is 
postmultiplied by B.

Scalar multiplication of a matrix is the operation of multiplying every element of 
the matrix by a given scalar. For scalar c and matrix A,

 cA = [caik]. (A-16)

if two matrices A and B have the same number of rows and columns, then we can 
compute the direct product (also called the Hadamard product or the Schur product 
or the entrywise product), which is a new matrix (or vector) whose ij element is the 
product of the corresponding elements of A and B. the usual symbol for this operation 
is “ ∘ .” thus, J1 2

2 3
R ∘ Ja b

b c
R = J1a 2b

2b 3c
R  and ¢3

5
≤ ∘ ¢2

4
≤ = ¢ 6

20
≤.

the product of a matrix and a vector is written

c = Ab.

3a simple way to check the conformability of two matrices for multiplication is to write down the dimensions 
of the operation, for example, (n * K) times (K * M). the inner dimensions must be equal; the result has 
dimensions equal to the outer values.
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the number of elements in b must equal the number of columns in A; the result is a 
vector with number of elements equal to the number of rows in A. For example,C5

4
1
S = C4 2 1

2 6 1
1 1 0

S  C a
b
c
S .

We can interpret this in two ways. First, it is a compact way of writing the three equations

 5 = 4a + 2b + 1c,
 4 = 2a + 6b + 1c,
 1 = 1a + 1b + 0c.

Second, by writing the set of equations asC5
4
1
S = a C4

2
1
S + b C2

6
1
S + c C1

1
0
S ,

we see that the right-hand side is a linear combination of the columns of the matrix 
where the coefficients are the elements of the vector. For the general case,

 c = Ab = b1a1 + b2a2 + g + bKaK. (A-17)

in the calculation of a matrix product C = AB, each column of C is a linear combination 
of the columns of A, where the coefficients are the elements in the corresponding column 
of B. that is,

 C = AB 3 ck = Abk. (A-18)

let ek be a column vector that has zeros everywhere except for a one in the kth 
position. then Aek is a linear combination of the columns of A in which the coefficient 
on every column but the kth is zero, whereas that on the kth is one. the result is

 ak = Aek. (A-19)

Combining this result with (a-17) produces

 (a1 a2 g an) = A(e1 e2 g en) = AI = A. (A-20)

in matrix multiplication, the identity matrix is analogous to the scalar 1. For any 
conformable matrix or vector A, AI = A. in addition, IA = A, although if A is not a 
square matrix, the two identity matrices are of different orders.

a conformable matrix of zeros produces the expected result: A0 = 0.

Some general rules for matrix multiplication are as follows:

●● Associative law: (AB)C = A(BC). (A-21)
●● Distributive law: A(B + C) = AB + AC. (A-22)
●● Transpose of a product: (AB)′ = B′A′. (A-23)
●● Transpose of an extended product: (ABC)′ = C′B′A′. (A-24)

A.2.8  SUMS OF VALUES

Denote by i a vector that contains a column of ones. then,

 a
n

i = 1
xi = x1 + x2 + g + xn = i′x. (A-25)
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if all elements in x are equal to the same constant a, then x = ai and

 a
n

i = 1
xi = i′(ai) = a(i′i) = na. (A-26)

For any constant a and vector x,

 a
n

i = 1
axi = aa

n

i = 1
xi = ai′x. (A-27)

if a = 1/n, then we obtain the arithmetic mean,

 x =
1
n

 a
n

i = 1
xi =

1
n

 i′x, (A-28)

from which it follows that

a
n

i = 1
xi = i′x = nx.

the sum of squares of the elements in a vector x is

 a
n

i = 1
xi

2 = x′x; (A-29)

while the sum of the products of the n elements in vectors x and y is

 a
n

i = 1
xiyi = x′y. (A-30)

by the definition of matrix multiplication,

 [X′X]kl = [xk
= xl] (A-31)

is the inner product of the kth and lth columns of X. For example, for the data set given in 
table a.1, if we define X as the 9 * 3 matrix containing (year, consumption, gNP), then

 [X′X]23 = a
1980

t = 1972
 consumptiont gNPt = 737.1(1185.9) + g + 1667.2(2633.1)

 = 19,743,711.34.

if X is n * K, then [again using (a-14)]

X′X = a
n

i = 1
xixi

=.

this form shows that the K * K matrix X′X is the sum of n K * K matrices, each 
formed from a single row (year) of X. For the example given earlier, this sum is of nine 
3 * 3 matrices, each formed from one row (year) of the original data matrix.

A.2.9  A USEFUL IDEMPOTENT MATRIX

a fundamental matrix in statistics is the “centering matrix” that is used to transform 
data to deviations from their mean. First,

 ix = i 
1
n

 i′x = D x
x
f
x

T =
1
n

 ii′x. (A-32)
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the matrix (1/n)ii′ is an n * n matrix with every element equal to 1/n. the set of values 
in deviations form is

 D x1 - x
x2 - x

g
xn - x

T = [x - ix] = c x -
1
n

 ii′x d . (A-33)

because x = Ix,

 c x -
1
n

 ii′x d = c Ix -
1
n

 ii′x d = c I -
1
n

 ii′ d x = M0x. (A-34)

Henceforth, the symbol M0 will be used only for this matrix. its diagonal elements 
are all (1 - 1/n), and its off-diagonal elements are -1/n. the matrix M0 is primarily 
useful in computing sums of squared deviations. Some computations are simplified 
by the result

M0i = c I -
1
n

 ii′ d i = i -
1
n

 i(i′i) = 0,

which implies that i′M0 = 0′. the sum of deviations about the mean is then

 a
n

i = 1
(xi - x) = i′[M0x] = 0′x = 0. (A-35)

For a single variable x, the sum of squared deviations about the mean is

 a
n

i = 1
(xi - x)2 = a a

n

i = 1
xi

2b - nx2. (A-36)

in matrix terms,

a
n

i = 1
(xi - x)2 = (x - xi)′(x - xi) = (M0x)′(M0x) = x′M0=M0x.

two properties of M0 are useful at this point. First, because all off-diagonal elements 
of M0 equal -1/n, M0 is symmetric. Second, as can easily be verified by multiplication, 
M0 is equal to its square; M0M0 = M0.

DEFINITION A.1 Idempotent Matrix
An idempotent matrix, M, is one that is equal to its square, that is, M2 = MM = M. 
If M is a symmetric idempotent matrix (all of the idempotent matrices we shall 
encounter are symmetric), then M′M = M as well.

thus, M0 is a symmetric idempotent matrix. Combining results, we obtain

 a
n

i = 1
(xi - x)2 = x′M0x. (A-37)
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Consider constructing a matrix of sums of squares and cross products in deviations from 
the column means. For two vectors x and y,

 a
n

i = 1
(xi - x)(yi - y) = (M0x)′(M0y), (A-38)

so

 D a
n

i = 1
(xi - x)2 a

n

i = 1
(xi - x)(yi - y)

a
n

i = 1
(yi - y)(xi - x) a

n

i = 1
(yi - y)2

T = Cx′M0x x′M0y
y′M0x y′M0y

S . (A-39)

if we put the two column vectors x and y in an n * 2 matrix Z = [x, y], then M0Z is 
the n * 2 matrix in which the two columns of data are in mean deviation form. then

(M0Z)′(M0Z) = Z′M0M0Z = Z′M0Z.

A.3 GEOMETRY OF MATRICES

A.3.1  VECTOR SPACES

the K elements of a column vector 

a = D a1

a2

g
aK

T
can be viewed as the coordinates of a point in a K-dimensional space, as shown in 
Figure a.1 for two dimensions, or as the definition of the line segment connecting the 
origin and the point defined by a.

two basic arithmetic operations are defined for vectors, scalar multiplication and 
addition. a scalar multiple of a vector, a, is another vector, say a*, whose coordinates 
are the scalar multiple of a’s coordinates. thus, in Figure a.1,

a = J1
2
R , a* = 2a = J2

4
R , a** = -

1
2

 a = J -1
2

-1
R .

the set of all possible scalar multiples of a is the line through the origin, 0 and a, any 
scalar multiple of a is a segment of this line. the sum of two vectors a and b is a third 
vector whose coordinates are the sums of the corresponding coordinates of a and b. For 
example,

c = a + b = J1
2
R + J2

1
R = J3

3
R .

geometrically, c is obtained by moving in the distance and direction defined by b from 
the tip of a or, because addition is commutative, from the tip of b in the distance and 
direction of a. Note that scalar multiplication and addition of vectors are special cases 
of (a-16) and (a-6) for matrices.
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the two-dimensional plane is the set of all vectors with two real-valued coordinates. 
We label this set ℝ2 (“r two,” not “r squared”). it has two important properties.

●● ℝ2 is closed under scalar multiplication; every scalar multiple of a vector in ℝ2 is 
also in ℝ2.

●● ℝ2 is closed under addition; the sum of any two vectors in the plane is always a 
vector in ℝ2.

FIGURE A.1  Vector Space.
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DEFINITION A.2 Vector Space
A vector space is any set of vectors that is closed under scalar multiplication and 
addition.

another example is the set of all real numbers, that is, ℝ1, that is, the set of vectors with 
one real element. in general, that set of K-element vectors all of whose elements are 
real numbers is a K-dimensional vector space, denoted ℝK. the preceding examples are 
drawn in ℝ2.

A.3.2  LINEAR COMBINATIONS OF VECTORS AND BASIS VECTORS

in Figure a.2, c = a + b and d = a* + b. but since a* = 2a, d = 2a + b. also, 
e = a + 2b and f = b + (-a) = b - a. as this exercise suggests, any vector in ℝ2 could 
be obtained as a linear combination of a and b.
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as is suggested by Figure a.2, any pair of two-element vectors, including a and b, 
that point in different directions will form a basis for ℝ2. Consider an arbitrary set of 
three vectors in ℝ2, a, b, and c. if a and b are a basis, then we can find numbers a1 and 
a2 such that c = a1a + a2b. let

 a = Ja1

a2
R , b = Jb1

b2
R , c = Jc1

c2
R .

then

  c1 = a1a1 + a2b1,

 c2 = a1a2 + a2b2. 
(A-40)

the solutions (a1, a2) to this pair of equations are

 a1 =
b2c1 - b1c2

a1b2 - b1a2
, a2 =

a1c2 - a2c1

a1b2 - b1a2
. (A-41)

FIGURE A.2  Linear Combinations of Vectors.
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DEFINITION A.3 Basis Vectors
A set of vectors in a vector space is a basis for that vector space if they are linearly 
independent and any vector in the vector space can be written as a linear combina-
tion of that set of vectors.

Z03_GREE1366_08_SE_APP.indd   10 3/14/17   9:25 PM



A-11  PArt VI  ✦   Appendices

this result gives a unique solution unless (a1b2 - b1a2) = 0. if (a1b2 - b1a2) = 0, 
then a1/a2 = b1/b2, which means that b is just a multiple of a. this returns us to our 
original condition, that a and b must point in different directions. the implication is that 
if a and b are any pair of vectors for which the denominator in (a-41) is not zero, then 
any other vector c can be formed as a unique linear combination of a and b. the basis of 
a vector space is not unique, since any set of vectors that satisfies the definition will do. 
but for any particular basis, only one linear combination of them will produce another 
particular vector in the vector space.

A.3.3  LINEAR DEPENDENCE

as the preceding should suggest, K vectors are required to form a basis for ℝK. although 
the basis for a vector space is not unique, not every set of K vectors will suffice. in 
Figure a.2, a and b form a basis for ℝ2, but a and a* do not. the difference between these 
two pairs is that a and b are linearly independent, whereas a and a* are linearly dependent.

DEFINITION A.4 Linear Dependence
A set of k Ú 2 vectors is linearly dependent if at least one of the vectors in the set 
can be written as a linear combination of the others.

DEFINITION A.5 Linear Independence
A set of vectors is linearly independent if and only if the only solution (a1, c, aK) to

a1a1 + a2a2 + g + aKaK = 0

is

a1 = a2 = g = aK = 0.

DEFINITION A.6 Basis for a Vector Space
A basis for a vector space of K dimensions is any set of K linearly independent 
vectors in that vector space.

because a* is a multiple of a, a and a* are linearly dependent. For another example, if

a = J1
2
R , b = J3

3
R , and c = J10

14
R ,

then

2a + b -
1
2

 c = 0,

so a, b, and c are linearly dependent. any of the three possible pairs of them, however, 
are linearly independent.

the preceding implies the following equivalent definition of a basis.
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For example, by definition, the space spanned by a basis for ℝK is ℝK. an implication 
of this is that if a and b are a basis for ℝ2 and c is another vector in ℝ2, the space spanned 
by [a, b, c] is, again, ℝ2. Of course, c is superfluous. Nonetheless, any vector in ℝ2 can 
be expressed as a linear combination of a, b, and c. (the linear combination will not be 
unique. Suppose, for example, that a and c are also a basis for ℝ2.)

Consider the set of three coordinate vectors whose third element is zero. in particular,

a′ = [a1 a2 0] and b′ = [b1 b2 0].

Vectors a and b do not span the three-dimensional space ℝ3. every linear combination of 
a and b has a third coordinate equal to zero; thus, for instance, c′ = [1 2 3] could not 
be written as a linear combination of a and b. if (a1b2 - a2b1) is not equal to zero [see 
(a-41)]; however, then any vector whose third element is zero can be expressed as a linear 
combination of a and b. So, although a and b do not span ℝ3, they do span something; 
they span the set of vectors in ℝ3 whose third element is zero. this area is a plane (the 
“floor” of the box in a three-dimensional figure). this plane in ℝ3 is a subspace, in this 
instance, a two-dimensional subspace. Note that it is not ℝ2; it is the set of vectors in ℝ3 
whose third coordinate is 0. any plane in ℝ3 that contains the origin, (0, 0, 0), regardless 
of how it is oriented, forms a two-dimensional subspace. any two independent vectors 
that lie in that subspace will span it. but without a third vector that points in some other 
direction, we cannot span any more of ℝ3 than this two-dimensional part of it. by the 
same logic, any line in ℝ3 that passes through the origin is a one-dimensional subspace, 
in this case, the set of all vectors in ℝ3 whose coordinates are multiples of those of the 
vector that define the line. a subspace is a vector space in all the respects in which 
we have defined it. We emphasize that it is not a vector space of lower dimension. For 
example, ℝ2 is not a subspace of ℝ3. the essential difference is the number of dimensions 
in the vectors. the vectors in ℝ3 that form a two-dimensional subspace are still three-
element vectors; they all just happen to lie in the same plane.

the space spanned by a set of vectors in ℝK has at most K dimensions. if this space 
has fewer than K dimensions, it is a subspace, or hyperplane. but the important point 
in the preceding discussion is that every set of vectors spans some space; it may be the 
entire space in which the vectors reside, or it may be some subspace of it.

A.3.5  RANK OF A MATRIX

We view a matrix as a set of column vectors. the number of columns in the matrix 
equals the number of vectors in the set, and the number of rows equals the number of 

because any (K + 1)st vector can be written as a linear combination of the K 
basis vectors, it follows that any set of more than K vectors in ℝK must be linearly 
dependent.

A.3.4  SUBSPACES

DEFINITION A.7 Spanning Vectors
The set of all linear combinations of a set of vectors is the vector space that is 
spanned by those vectors.
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coordinates in each column vector. if the matrix contains K rows, its column space might 
have K dimensions. but,

DEFINITION A.8 Column Space
The column space of a matrix is the vector space that is spanned by its column 
vectors.

DEFINITION A.9 Column Rank
The column rank of a matrix is the dimension of the vector space that is spanned 
by its column vectors.

as we have seen, it might have fewer dimensions; the column vectors might be linearly 
dependent, or there might be fewer than K of them. Consider the matrix

A = C1 5 6
2 6 8
7 1 8

S .

it contains three vectors from ℝ3, but the third is the sum of the first two, so the column 
space of this matrix cannot have three dimensions. Nor does it have only one, because 
the three columns are not all scalar multiples of one another. Hence, it has two, and the 
column space of this matrix is a two-dimensional subspace of ℝ3. it follows that the 
column rank of a matrix is

equal to the largest number of linearly independent column vectors it contains. the 
column rank of A is 2. For another specific example, consider

B = D1 2 3
5 1 5
6 4 5
3 1 4

T .

it can be shown (we shall see how later) that this matrix has a column rank equal to 3. 
each column of B is a vector in ℝ4, so the column space of B is a three-dimensional 
subspace of ℝ4.

Consider, instead, the set of vectors obtained by using the rows of B instead of the 
columns. the new matrix would be

C = C1 5 6 3
2 1 4 1
3 5 5 4

S .

this matrix is composed of four column vectors from ℝ3. (Note that C is B′.) the column 
space of C is at most ℝ3, since four vectors in ℝ3 must be linearly dependent. in fact, the 
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column space of C is ℝ3. although this is not the same as the column space of B, it does 
have the same dimension. thus, the column rank of C and the column rank of B are the 
same. but the columns of C are the rows of B. thus, the column rank of C equals the 
row rank of B. that the column and row ranks of B are the same is not a coincidence. 
the general results (which are equivalent) are as follows:

THEOREM A.1 Equality of Row and Column Rank
The column rank and row rank of a matrix are equal. By the definition of row 
rank and its counterpart for column rank, we obtain the corollary, the row space 
and column space of a matrix have the same dimension. (A-42)

theorem a.1 holds regardless of the actual row and column rank. if the column 
rank of a matrix happens to equal the number of columns it contains, then the matrix 
is said to have full column rank. Full row rank is defined likewise. because the row and 
column ranks of a matrix are always equal, we can speak unambiguously of the rank of 
a matrix. For either the row rank or the column rank (and, at this point, we shall drop 
the distinction), it follows that

 rank(A) = rank(A′) … min (number of rows, number of columns). (A-43)

in most contexts, we shall be interested in the columns of the matrices we manipulate. 
We shall use the term full rank to describe a matrix whose rank is equal to the number 
of columns it contains.

Of particular interest will be the distinction between full rank and short rank 
matrices. the distinction turns on the solutions to Ax = 0. if a nonzero x for which 
Ax = 0 exists, then A does not have full rank. equivalently, if the nonzero x exists, then 
the columns of A are linearly dependent and at least one of them can be expressed as a 
linear combination of the others. For example, a nonzero set of solutions toJ1 3 10

2 3 14
R Cx1

x2

x3

S = J0
0
R

is any multiple of x′ = (2, 1, -1
2).

in a product matrix C = AB, every column of C is a linear combination of the 
columns of A, so each column of C is in the column space of A. it is possible that the set 
of columns in C could span this space, but it is not possible for them to span a higher-
dimensional space. at best, they could be a full set of linearly independent vectors in 
A’s column space. We conclude that the column rank of C could not be greater than that 
of A. Now, apply the same logic to the rows of C, which are all linear combinations of 
the rows of B. For the same reason that the column rank of C cannot exceed the column 
rank of A, the row rank of C cannot exceed the row rank of B. row and column ranks 
are always equal, so we can conclude that

 rank(AB) … min(rank(A), rank(B)). (A-44)
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a useful corollary to (a-44) is

 if A is M * n and B is a square matrix of rank n, then rank(AB) = rank(A). (A-45)

another application that plays a central role in the development of regression analysis 
is, for any matrix A,

 rank(A) = rank(A′A) = rank(AA′). (A-46)

A.3.6  DETERMINANT OF A MATRIX

the determinant of a square matrix—determinants are not defined for nonsquare 
matrices—is a function of the elements of the matrix. there are various definitions, 
most of which are not useful for our work. Determinants figure into our results in 
several ways, however, that we can enumerate before we need formally to define the 
computations.

PROPOSITION 
The determinant of a matrix is nonzero if and only if it has full rank.

Full rank and short rank matrices can be distinguished by whether or not their 
determinants are nonzero. there are some settings in which the value of the determinant 
is also of interest, so we now consider some algebraic results.

it is most convenient to begin with a diagonal matrix

D = Dd1 0 0 g 0
0 d2 0 g 0

g
0 0 0 g dK

T .

the column vectors of D define a “box” in ℝK whose sides are all at right angles to one 
another.4 its “volume,” or determinant, is simply the product of the lengths of the sides, 
which we denote

 � D � = d1d2 cdK = q
K

k = 1
dk. (A-47)

a special case is the identity matrix, which has, regardless of K, � IK � = 1. Multiplying D 
by a scalar c is equivalent to multiplying the length of each side of the box by c, which 
would multiply its volume by cK. thus,

 � cD � = cK � D � . (A-48)

Continuing with this admittedly special case, we suppose that only one column of D is 
multiplied by c. in two dimensions, this would make the box wider but not higher, or vice 
versa. Hence, the “volume” (area) would also be multiplied by c. Now, suppose that each 
side of the box were multiplied by a different c, the first by c1, the second by c2, and so 

4each column vector defines a segment on one of the axes.
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on. the volume would, by an obvious extension, now be c1c2 ccK � D � . the matrix with 
columns defined by [c1d1 c2d2 c] is just DC, where C is a diagonal matrix with ci as its 
ith diagonal element. the computation just described is, therefore,

 � DC � = � D � # � C � . (A-49)

(the determinant of C is the product of the ci’s since C, like D, is a diagonal matrix.) 
in particular, note what happens to the whole thing if one of the ci’s is zero.

For 2 * 2 matrices, the computation of the determinant is

 2 a c
b d

2 = ad - bc. (A-50)

Notice that it is a function of all the elements of the matrix. this statement will be true, 
in general. For more than two dimensions, the determinant can be obtained by using an 
expansion by cofactors. Using any row, say, i, we obtain

 � A � = a
K

k = 1
aik(-1)i + k � A(ik) � , k = 1, c, K, (A-51)

where A(ik) is the matrix obtained from A by deleting row i and column k. the 
determinant of A(ik) is called a minor of A.5 When the correct sign, (-1)i + k, is added, it 
becomes a cofactor. this operation can be done using any column as well. For example, 
a 4 * 4 determinant becomes a sum of four 3 * 3s, whereas a 5 * 5 is a sum of five 
4 * 4s, each of which is a sum of four 3 * 3s, and so on. Obviously, it is a good idea to 
base (a-51) on a row or column with many zeros in it, if possible. in practice, this rapidly 
becomes a heavy burden. it is unlikely, though, that you will ever calculate any 
determinants over 3 * 3 without a computer. a 3 * 3, however, might be computed on 
occasion; if so, the following shortcut known as Sarrus’s rule will prove useful:3 a11 a12 a13

a21 a22 a23

a31 a32 a33

3 = a11a22a33 + a12a23a31 + a13a32a21 - a31a22a13 - a21a12a33 - a11a23a32.

although (a-48) and (a-49) were given for diagonal matrices, they hold for general 
matrices C and D. One special case of (a-48) to note is that of c = -1. Multiplying a 
matrix by -1 does not necessarily change the sign of its determinant. it does so only if 
the order of the matrix is odd. by using the expansion by cofactors formula, an additional 
result can be shown:

 � A � = � A′ � . (A-52)

A.3.7  A LEAST SQUARES PROBLEM

given a vector y and a matrix X, we are interested in expressing y as a linear combination 
of the columns of X. there are two possibilities. if y lies in the column space of X, then 
we shall be able to find a vector b such that

 y = Xb. (A-53)

5if i equals k, then the determinant is a principal minor.
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Figure a.3 illustrates such a case for three dimensions in which the two columns of X 
both have a third coordinate equal to zero. Only y’s whose third coordinate is zero, such 
as y0 in the figure, can be expressed as Xb for some b. For the general case, assuming 
that y is, indeed, in the column space of X, we can find the coefficients b by solving the 
set of equations in (a-53). the solution is discussed in the next section.

Suppose, however, that y is not in the column space of X. in the context of this 
example, suppose that y’s third component is not zero. then there is no b such that 
(a-53) holds. We can, however, write

 y = Xb + e, (A-54)

where e is the difference between y and Xb. by this construction, we find an Xb that is 
in the column space of X, and e is the difference, or “residual.” Figure a.3 shows two 
examples, y and y*. For the present, we consider only y. We are interested in finding the 
b such that y is as close as possible to Xb in the sense that e is as short as possible.

FIGURE A.3  Least Squares Projections.

Third coordinate

First coordinate

Second coordinate

x1

x2

y

e

y*

y0

e*

u*

u

(Xb)

(Xb)*

DEFINITION A.10 Length of a Vector
The length, or norm, of a vector e is given by the Pythagorean theorem:

 }e } = 2e′e. (A-55)

the problem is to find the b for which

}e } = }y - Xb }

is as small as possible. the solution is that b that makes e perpendicular, or orthogonal, to Xb.
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returning once again to our fitting problem, we find that the b we seek is that for 
which

e # Xb.

expanding this set of equations gives the requirement

 (Xb)′e = 0

 = b′X′y - b′X′Xb

 = b′[X′y - X′Xb],

or, assuming b is not 0, the set of equations

X′y = X′Xb.

the means of solving such a set of equations is the subject of Section a.4.
in Figure a.3, the linear combination Xb is called the projection of y into the column 

space of X. the figure is drawn so that, although y and y* are different, they are similar in 
that the projection of y lies on top of that of y*. the question we wish to pursue here is, 
Which vector, y or y*, is closer to its projection in the column space of X? Superficially, 
it would appear that y is closer, because e is shorter than e*. Yet y* is much more nearly 
parallel to its projection than y, so the only reason that its residual vector is longer is that 
y* is longer compared with y. a measure of comparison that would be unaffected by the 
length of the vectors is the angle between the vector and its projection (assuming that 
angle is not zero). by this measure, u* is smaller than u, which would reverse the earlier 
conclusion.

DEFINITION A.11 Orthogonal Vectors
Two nonzero vectors a and b are orthogonal, written a # b, if and only if

a′b = b′a = 0.

THEOREM A.2 The Cosine Law

The angle u between two vectors a and b satisfies cos u =
a′b

}a } * }b }
.

the two vectors in the calculation would be y or y* and Xb or (Xb)*. a zero cosine 
implies that the vectors are orthogonal. if the cosine is one, then the angle is zero, which 
means that the vectors are the same. (they would be if y were in the column space 
of X.) by dividing by the lengths, we automatically compensate for the length of y. by 
this measure, we find in Figure a.3 that y * is closer to its projection, (Xb)* than y is to 
its projection, Xb.
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A.4 SOLUTION OF A SYSTEM OF LINEAR EQUATIONS

Consider the set of n linear equations

 Ax = b, (A-56)

in which the K elements of x constitute the unknowns. A is a known matrix of coefficients, 
and b is a specified vector of values. We are interested in knowing whether a solution 
exists; if so, then how to obtain it; and finally, if it does exist, then whether it is unique.

A.4.1  SYSTEMS OF LINEAR EQUATIONS

For most of our applications, we shall consider only square systems of equations, that is, 
those in which A is a square matrix. in what follows, therefore, we take n to equal K. because 
the number of rows in A is the number of equations, whereas the number of columns in 
A is the number of variables, this case is the familiar one of “n equations in n unknowns.”

there are two types of systems of equations.

by definition, a nonzero solution to such a system will exist if and only if A does not 
have full rank. if so, then for at least one column of A, we can write the preceding as

ak = - a
m ≠ k

 
xm

xk
 am.

this means, as we know, that the columns of A are linearly dependent and that � A � = 0.

the vector b is chosen arbitrarily and is to be expressed as a linear combination of the 
columns of A. because b has K elements, this solution will exist only if the columns of 
A span the entire K-dimensional space, ℝK.6 equivalently, we shall require that the 
columns of A be linearly independent or that � A �  not be equal to zero.

A.4.2  INVERSE MATRICES

to solve the system Ax = b for x, something akin to division by a matrix is needed. 
Suppose that we could find a square matrix B such that BA = I. if the equation system 
is premultiplied by this B, then the following would be obtained:

 BAx = Ix = x = Bb. (A-57)

6if A does not have full rank, then the nonhomogeneous system will have solutions for some vectors b, 
namely, any b in the column space of A. but we are interested in the case in which there are solutions for all 
nonzero vectors b, which requires A to have full rank.

DEFINITION A.12 Homogeneous Equation System
A homogeneous system is of the form Ax = 0.

DEFINITION A.13 Nonhomogeneous Equation System
A nonhomogeneous system of equations is of the form Ax = b, where b is a 
nonzero vector.
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if the matrix B exists, then it is the inverse of A, denoted

B = A-1.

From the definition,

A-1A = I.

in addition, by premultiplying by A, postmultiplying by A-1, and then canceling terms, 
we find

AA-1 = I

as well.
if the inverse exists, then it must be unique. Suppose that it is not and that C is a 

different inverse of A. then CAB = CAB, but (CA)B = IB = B and C(AB) = C, 
which would be a contradiction if C did not equal B. because, by (a-57), the solution is 
x = A-1b, the solution to the equation system is unique as well.

We now consider the calculation of the inverse matrix. For a 2 * 2 matrix, AB = I 
implies thatJa11 a12

a21 a22
R Jb11 b12

b21 b22
R = J1 0

0 1
R or Da11b11 + a12b21 = 1

a11b12 + a12b22 = 0
a21b11 + a22b21 = 0
a21b12 + a22b22 = 1

T .

the solutions are

 Jb11 b12

b21 b22
R =

1
a11a22 - a12a21

 J a22 -a12

-a21 a11
R =

1
� A �

 J a22 -a12

-a21 a11
R . (A-58)

Notice the presence of the reciprocal of � A �  in A-1. this result is not specific to the 2 * 2 
case. We infer from it that if the determinant is zero, then the inverse does not exist.

DEFINITION A.14 Nonsingular Matrix
A matrix is nonsingular if and only if its inverse exists.

the simplest inverse matrix to compute is that of a diagonal matrix. if

D = Dd1 0 0 g 0
0 d2 0 g 0

g
0 0 0 g dK

T , then D-1 = D1/d1 0 0 g 0
0 1/d2 0 g 0

g
0 0 0 g 1/dK

T ,

which shows, incidentally, that I-1 = I.
We shall use aik to indicate the ikth element of A-1. the general formula for 

computing an inverse matrix is

 aik =
� Cki �
� A �

, (A-59)
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where � Cki �  is the kith cofactor of A. [See (a-51).] it follows, therefore, that for A to be 
nonsingular, � A �  must be nonzero. Notice the reversal of the subscripts

Some computational results involving inverses are

 � A-1 � =
1

� A �
,  (A-60)

 (A-1)-1 = A,  (A-61)

 (A-1)′ = (A′)-1. (A-62)

 if A is symmetric, then A-1 is symmetric. (A-63)

When both inverse matrices exist,

 (AB)-1 = B-1A-1. (A-64)

Note the condition preceding (a-64). it may be that AB is a square, nonsingular 
matrix when neither A nor B is even square. (Consider, e.g., A′A.) extending (a-64), 
we have

 (ABC)-1 = C-1(AB)-1 = C-1B-1A-1. (A-65)

recall that for a data matrix X, X′X is the sum of the outer products of the rows 
of X. Suppose that we have already computed S = (X′X)-1 for a number of years of 
data, such as those given in table a.1. the following result, which is called an updating 
formula, shows how to compute the new S that would result when a new row is added 
to X: For symmetric, nonsingular matrix A,

 [A { bb′]-1 = A-1 | c 1

1 { b′A-1b
dA-1 bb′A-1. (A-66)

Note the reversal of the sign in the inverse. two more general forms of (a-66) that are 
occasionally useful are

 [A { bc′]-1 = A-1 | c 1

1 { c′A-1b
dA-1bc′A-1, (A-66a)

[A { BCB′]-1 = A-1 | A-1B[C-1 { B′A-1B]-1B′A-1. (A-66b)

A.4.3  NONHOMOGENEOUS SYSTEMS OF EQUATIONS

For the nonhomogeneous system

Ax = b,

if A is nonsingular, then the unique solution is

x = A-1b.

A.4.4  SOLVING THE LEAST SQUARES PROBLEM

We now have the tool needed to solve the least squares problem posed in Section 
a.3.7. We found the solution vector, b to be the solution to the nonhomogenous system 
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X′y = X′Xb. let a equal the vector X′y and let A equal the square matrix X′X. the 
equation system is then

Ab = a.

by the preceding results, if A is nonsingular, then

b = A-1a = (X′X)-1(X′y)

assuming that the matrix to be inverted is nonsingular. We have reached the irreducible 
minimum. if the columns of X are linearly independent, that is, if X has full rank, then this 
is the solution to the least squares problem. if the columns of X are linearly dependent, 
then this system has no unique solution.

A.5 PARTITIONED MATRICES

in formulating the elements of a matrix, it is sometimes useful to group some of the 
elements in submatrices. let

A = C1 4 5
2 9 3
8 9 6

S = JA11 A12

A21 A22
R .

A is a partitioned matrix. the subscripts of the submatrices are defined in the same 
fashion as those for the elements of a matrix. a common special case is the block-
diagonal matrix:

A = JA11 0
0 A22

R ,

where A11 and A22 are square matrices.

A.5.1  ADDITION AND MULTIPLICATION OF PARTITIONED MATRICES

For conformably partitioned matrices A and B,

 A + B = JA11 + B11 A12 + B12

A21 + B21 A22 + B22
R , (A-67)

and

 AB = JA11 A12

A21 A22
R  JB11 B12

B21 B22
R = JA11B11 + A12B21 A11B12 + A12B22

A21B11 + A22B21 A21B12 + A22B22
R . (A-68)

in all these, the matrices must be conformable for the operations involved. For addition, 
the dimensions of Aik and Bik must be the same. For multiplication, the number of 
columns in Aij must equal the number of rows in Bjl for all pairs i and j. that is, all the 
necessary matrix products of the submatrices must be defined. two cases frequently 
encountered are of the form

 JA1

A2
R =

 JA1

A2
R = [A1

= A2
= ] JA1

A2
R = [A1

=A1 + A2
=A2], (A-69)
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and

 JA11 0
0 A22

R =

 JA11 0
0 A22

R = JA11
= A11 0
0 A22

= A22
R . (A-70)

A.5.2  DETERMINANTS OF PARTITIONED MATRICES

the determinant of a block-diagonal matrix is obtained analogously to that of a diagonal 
matrix:

 2 A11 0
0 A22

2 = � A11 � * � A22 � . (A-71)

the determinant of a general 2 * 2 partitioned matrix is

 ̀
A11 A12

A21 A22
` = � A22 � * � A11 - A12A22

-1A21 � = � A11 � * � A22 - A21A11
-1A12 � . (A-72)

A.5.3  INVERSES OF PARTITIONED MATRICES

the inverse of a block-diagonal matrix is

 JA11 0
0 A22

R -1

= JA11
-1 0

0 A22
-1 R , (A-73)

which can be verified by direct multiplication. For the general 2 * 2 partitioned matrix, 
one form of the partitioned inverse is

 JA11 A12

A21 A22
R -1

= JA11
-1(I + A12F2A21A11

-1) -A11
-1A12F2

-F2A21A11
-1 F2

R , (A-74)

where

F2 = (A22 - A21A11
-1A12)

-1.

the upper left block could also be written as

F1 = (A11 - A12A22
-1A21)

-1.

A.5.4  DEVIATIONS FROM MEANS

Suppose that we begin with a column vector of n values x and let

A = D n a
n

i = 1
xi

a
n

i = 1
xi a

n

i = 1
xi

2
T = J i′i i′x

x′i x′x
R .

We are interested in the lower-right-hand element of A-1. Upon using the definition 
of F2 in (a-74), this is

 F2 = [x′x - (x′i)(i′i)-1(i′x)]-1 = bx′JIx - ia 1
n
b i′xR r -1

 = bx′JI - a 1
n
b ii′ Rx r -1

= (x′M0x)-1.
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therefore, the lower-right-hand value in the inverse matrix is

(x′M0x)-1 =
1

a n
i = 1(xi - x)2 = a22.

Now, suppose that we replace x with X, a matrix with several columns. We seek the lower-
right block of (Z′Z)-1, where Z = [i, X]. the analogous result is

(Z′Z)22 = [X′X - X′i(i′i)-1i′X]-1 = (X′M0X)-1,

which implies that the K * K matrix in the lower-right corner of (Z′Z)-1 is the inverse 
of the K * K matrix whose jkth element is a n

i = 1(xij - xj)(xik - xk). thus, when a data 
matrix contains a column of ones, the elements of the inverse of the matrix of sums 
of squares and cross products will be computed from the original data in the form of 
deviations from the respective column means.

A.5.5  KRONECKER PRODUCTS

a calculation that helps to condense the notation when dealing with sets of regression 
models (see Chapter 10) is the Kronecker product. For general matrices A and B,

 A ⊗ B = D a11B a12B g a1KB
a21B a22B g a2KB

g
an1B an2B g anKB

T . (A-75)

Notice that there is no requirement for conformability in this operation. the Kronecker 
product can be computed for any pair of matrices. if A is K * L and B is m * n, then 
A ⊗ B is (Km) * (Ln).

For the Kronecker product,

 (A ⊗ B)-1 = (A-1 ⊗ B-1), (A-76)

if A is M * M and B is n * n, then

 � A ⊗ B � = � A � n � B � M,

 (A ⊗ B)′ = A′ ⊗ B′,

 trace(A ⊗ B) = trace(A) trace(B).

(the trace of a matrix is defined in Section a.6.7.) For A, B, C, and D such that the 
products are defined,

(A ⊗ B)(C ⊗ D) = AC ⊗ BD.

A.6 CHARACTERISTIC ROOTS AND VECTORS

a useful set of results for analyzing a square matrix A arises from the solutions to the 
set of equations

 Ac = lc. (A-77)
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the pairs of solutions (c,l) are the characteristic vectors c and characteristic roots l. 
if c is any nonzero solution vector, then kc is also for any value of K. to remove the 
indeterminancy, c is normalized so that c′c = 1.

the solution then consists of l and the n - 1 unknown elements in c.

A.6.1  THE CHARACTERISTIC EQUATION

Solving (a-77) can, in principle, proceed as follows. First, (a-77) implies that

Ac = lIc,

or that

(A - lI)c = 0.

this equation is a homogeneous system that has a nonzero solution only if the matrix 
(A - lI) is singular or has a zero determinant. therefore, if l is a solution, then

 � A - lI � = 0. (A-78)

this polynomial in l is the characteristic equation of A. For example, if

A = J5 1
2 4

R ,

then

� A - lI � = ` 5 - l 1
2 4 - l

` = (5 - l)(4 - l) - 2(1) = l2 - 9l + 18.

the two solutions are l = 6 and l = 3.
in solving the characteristic equation, there is no guarantee that the characteristic 

roots will be real. in the preceding example, if the 2 in the lower-left-hand corner of the 
matrix were -2 instead, then the solution would be a pair of complex values. the same 
result can emerge in the general n * n case. the characteristic roots of a symmetric 
matrix such as X′X are real, however.7 this result will be convenient because most of 
our applications will involve the characteristic roots and vectors of symmetric matrices.

For an n * n matrix, the characteristic equation is an nth-order polynomial in l. its 
solutions may be n distinct values, as in the preceding example, or may contain repeated 
values of l, and may contain some zeros as well.

A.6.2  CHARACTERISTIC VECTORS

With l in hand, the characteristic vectors are derived from the original problem,

Ac = lc,

or

 (A - lI)c = 0. (A-79)

Neither pair determines the values of c1 and c2. but this result was to be expected; it 
was the reason c′c = 1 was specified at the outset. the additional equation c′c = 1, 
however, produces complete solutions for the vectors.

7a proof may be found in theil (1971).
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A.6.3  GENERAL RESULTS FOR CHARACTERISTIC ROOTS AND VECTORS

a K * K symmetric matrix has K distinct characteristic vectors, c1, c2, ccK. the 
corresponding characteristic roots, l1, l2, c, lK, although real, need not be distinct. 
the characteristic vectors of a symmetric matrix are orthogonal,8 which implies that for 
every i ≠ j, ci

=cj = 0.9 it is convenient to collect the K-characteristic vectors in a K * K 
matrix whose ith column is the ci corresponding to li,

C = [c1 c2 g cK],

and the K-characteristic roots in the same order, in a diagonal matrix,

� = Dl1 0 g 0
0 l2 g 0

g
0 0 g lK

T .

then, the full set of equations

Ack = lkck

is contained in

 AC = C�. (A-80)

because the vectors are orthogonal and ci
=ci = 1, we have

 C′C = D c1
=c1 c1

=c2 g c1
=cK

c2
=c1 c2

=c2 g c2
=cK

f
cK
= c1 cK

= c2 g cK
= cK

T = I. (A-81)

result (a-81) implies that

 C′ = C-1. (A-82)

Consequently,

 CC′ = CC-1 = I (A-83)

as well, so the rows as well as the columns of C are orthogonal.

A.6.4  DIAGONALIZATION AND SPECTRAL DECOMPOSITION OF A MATRIX

by premultiplying (a-80) by C′ and using (a-81), we can extract the characteristic 
roots of A.

8For proofs of these propositions, see Strang (2016).
9this statement is not true if the matrix is not symmetric. For instance, it does not hold for the characteristic 
vectors computed in the first example. For nonsymmetric matrices, there is also a distinction between “right” 
characteristic vectors, Ac = lc, and “left” characteristic vectors, d′A = ld′, which may not be equal.
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in this representation, the K * K matrix A is written as a sum of K rank one matrices. this 
sum is also called the eigenvalue (or, “own” value) decomposition of A. in this connection, 
the term signature of the matrix is sometimes used to describe the characteristic roots 
and vectors. Yet another pair of terms for the parts of this decomposition are the latent 
roots and latent vectors of A.

A.6.5  RANK OF A MATRIX

the diagonalization result enables us to obtain the rank of a matrix very easily. to do 
so, we can use the following result.

alternatively, by post multiplying (a-80) by C′ and using (a-83), we obtain a useful 
representation of A.

DEFINITION A.16 Spectral Decomposition of a Matrix
The spectral decomposition of A is

 A = C�C′ = a
K

k = 1
lkckck

= . (A-85)

THEOREM A.3 Rank of a Product
For any matrix A and nonsingular matrices B and C, the rank of  BAC is equal to the 
rank of A. Proof: By (A-45), rank(BAC) = rank[(BA)C] = rank(BA). By (A-43), 
rank(BA) = rank(A′B′), and applying (A-45) again, rank(A′B′) = rank(A′) 
because B′ is nonsingular if B is nonsingular [once again, by (A-43)]. Finally, 
applying (A-43) again to obtain rank(A′) = rank(A) gives the result.

DEFINITION A.15 Diagonalization of a Matrix
The diagonalization of a matrix A is

 C′AC = C′C� = I� = �. (A-84)

because C and C′ are nonsingular, we can use them to apply this result to (a-84). by 
an obvious substitution,

 rank(A) = rank(�). (A-86)

Finding the rank of � is trivial. because � is a diagonal matrix, its rank is just the 
number of nonzero values on its diagonal. by extending this result, we can prove the 
following theorems. (Proofs are brief and are left for the reader.)
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the row rank and column rank of a matrix are equal, so we should be able to apply 
theorem a.5 to AA′ as well. this process, however, requires an additional result.

Note how this result enters the spectral decomposition given earlier. if any of the 
characteristic roots are zero, then the number of rank one matrices in the sum is reduced 
correspondingly. it would appear that this simple rule will not be useful if A is not square. 
but recall that

 rank(A) = rank(A′A). (A-87)

because A′A is always square, we can use it instead of A. indeed, we can use it even if 
A is not square, which leads to a fully general result.

THEOREM A.4 Rank of a Symmetric Matrix
The rank of a symmetric matrix is the number of nonzero characteristic roots 
it contains.

THEOREM A.5 Rank of a Matrix
The rank of any matrix A equals the number of nonzero characteristic roots 
in A′A.

THEOREM A.6 Roots of an Outer Product Matrix
The nonzero characteristic roots of AA′ are the same as those of A′A.

the proof is left as an exercise. a useful special case the reader can examine is the 
characteristic roots of aa′ and a′a, where a is an n * 1 vector.

if a characteristic root of a matrix is zero, then we have Ac = 0. thus, if the matrix 
has a zero root, it must be singular. Otherwise, no nonzero c would exist. in general, 
therefore, a matrix is singular; that is, it does not have full rank if and only if it has at 
least one zero root.

A.6.6  CONDITION NUMBER OF A MATRIX

as the preceding might suggest, there is a discrete difference between full rank and short 
rank matrices. in analyzing data matrices such as the one in Section a.2, however, we 
shall often encounter cases in which a matrix is not quite short ranked, because it has all 
nonzero roots, but it is close. that is, by some measure, we can come very close to being 
able to write one column as a linear combination of the others. this case is important; 
we shall examine it at length in our discussion of multicollinearity in Section 4.9.1. Our 
definitions of rank and determinant will fail to indicate this possibility, but an alternative 
measure, the condition number, is designed for that purpose. Formally, the condition 
number for a square matrix A is
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 g = c maximum root
minimum root

d
1/2

. (A-88)

For nonsquare matrices X, such as the data matrix in the example, we use A = X′X. as 
a further refinement, because the characteristic roots are affected by the scaling of the 
columns of X, we scale the columns to have length 1 by dividing each column by its norm 
[see (a-55)]. For the X in Section a.2, the largest characteristic root of A is 4.9255 and 
the smallest is 0.0001543. therefore, the condition number is 178.67, which is extremely 
large. (Values greater than 20 are large.) that the smallest root is close to zero compared 
with the largest means that this matrix is nearly singular. Matrices with large condition 
numbers are difficult to invert accurately.

A.6.7  TRACE OF A MATRIX

the trace of a square K * K matrix is the sum of its diagonal elements:

tr(A) = a
K

k = 1
akk.

Some easily proven results are

 tr(cA) = c(tr(A)), (A-89)

 tr(A′) = tr(A), (A-90)

 tr(A + B) = tr(A) + tr(B), (A-91)

 tr(IK) = K. (A-92)

 tr(AB) = tr(BA). (A-93)

a′a = tr(a′a) = tr(aa′)

tr(A′A) = a
K

k = 1
ak
= ak = a

K

i = 1
a
K

k = 1
aik

2 .

the permutation rule can be extended to any cyclic permutation in a product:

 tr(ABCD) = tr(BCDA) = tr(CDAB) = tr(DABC). (A-94)

by using (a-84), we obtain

 tr(C′AC) = tr(ACC′) = tr(AI) = tr(A) = tr(�). (A-95)

because � is diagonal with the roots of A on its diagonal, the general result is the 
following.

THEOREM A.7 Trace of a Matrix

The trace of a matrix equals the sum of its characteristic roots. (A-96)
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Notice that we get the expected result if any of these roots is zero. the determinant is 
the product of the roots, so it follows that a matrix is singular if and only if its determinant 
is zero and, in turn, if and only if it has at least one zero characteristic root.

A.6.9  POWERS OF A MATRIX

We often use expressions involving powers of matrices, such as AA = A2. For positive 
integer powers, these expressions can be computed by repeated multiplication. but this 
does not show how to handle a problem such as finding a B such that B2 = A, that is, 
the square root of a matrix. the characteristic roots and vectors provide a solution. 
Consider, first

 AA = A2 = (C�C′)(C�C′) = C�C′C�C′ = C�I�C′ = C��C′ = C�2C′.

 (A-100)

two results follow. because �2 is a diagonal matrix whose nonzero elements are the 
squares of those in �, the following is implied.

 
For any symmetric matrix, the characteristic roots of A2 are the

  squares of those of A, and the characteristic vectors are the same.
 (A-101)

the proof is obtained by observing that the last result in (a-100) is the spectral 
decomposition of the matrix B = AA. because A3 = AA2 and so on, (a-101) extends 
to any positive integer. by convention, for any A, A0 = I. thus, for any symmetric matrix 
A, AK = C�KC′, K = 0, 1, c. Hence, the characteristic roots of AK are lK, whereas 
the characteristic vectors are the same as those of A. if A is nonsingular, so that all its 
roots li are nonzero, then this proof can be extended to negative powers as well.

A.6.8  DETERMINANT OF A MATRIX

recalling how tedious the calculation of a determinant promised to be, we find that the 
following is particularly useful. because

  C′AC = �,
  � C′AC � = � � � . (A-97)

Using a number of earlier results, we have, for orthogonal matrix C,

  � C′AC � = � C′ � # � A � # � C � = � C′ � # � C � # � A � = � C′C � # � A � = � I � # � A � = 1 # � A �
  = � A �
  = � � � . (A-98)

because � � �  is just the product of its diagonal elements, the following is implied.

THEOREM A.8 Determinant of a Matrix

The determinant of a matrix equals the product of its characteristic roots. (A-99)
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by extending the notion of repeated multiplication, we now have a more general result.

if A-1 exists, then

 A-1 = (C�C′)-1 = (C′)-1�-1C-1 = C�-1C′, (A-102)

where we have used the earlier result, C′ = C-1. this gives an important result that is 
useful for analyzing inverse matrices.

THEOREM A.9 Characteristic Roots of an Inverse Matrix
If A-1 exists, then the characteristic roots of A-1 are the reciprocals of those of A, 
and the characteristic vectors are the same.

THEOREM A.10 Characteristic Roots of a Matrix Power
For any nonsingular symmetric matrix A = C�C′, AK = C�KC′, K = c, -2,
-1, 0, 1, 2, c.

DEFINITION A.17 Real Powers of a Positive Definite Matrix

For a positive definite matrix A, Ar = C�rC′, for any real number, r. (A-105)

We now turn to the general problem of how to compute the square root of a matrix. 
in the scalar case, the value would have to be nonnegative. the matrix analog to this 
requirement is that all the characteristic roots are nonnegative. Consider, then, the 
candidate

 A1/2 = C�1/2C = CD2l1 0 g 0
0 2l2 g 0

g
0 0 g 2ln

TC′. (A-103)

this equation satisfies the requirement for a square root, because

 A1/2A1/2 = C�1/2C′C�1/2C′ = C�C′ = A. (A-104)

if we continue in this fashion, we can define the nonnegative powers of a matrix more 
generally, still assuming that all the characteristic roots are nonnegative. For example, 
A1/3 = C�1/3C′. if all the roots are strictly positive, we can go one step further and 
extend the result to any real power. For reasons that will be made clear in the next 
section, we say that a matrix with positive characteristic roots is positive definite. it is 
the matrix analog to a positive number.
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the characteristic roots of Ar are the rth powers of those of A, and the characteristic 
vectors are the same.

if A is only nonnegative definite—that is, has roots that are either zero or positive—
then (a-105) holds only for nonnegative r.

A.6.10  IDEMPOTENT MATRICES

idempotent matrices are equal to their squares [see (a-37) to (a-39)]. in view of their 
importance in econometrics, we collect a few results related to idempotent matrices at this 
point. First, (a-101) implies that if l is a characteristic root of an idempotent matrix, then 
l = lK for all nonnegative integers K. as such, if A is a symmetric idempotent matrix, 
then all its roots are one or zero. assume that all the roots of A are one. then � = I, 
and A = C�C′ = CIC′ = CC′ = I. if the roots are not all one, then one or more are 
zero. Consequently, we have the following results for symmetric idempotent matrices:10

●● The only full rank, symmetric idempotent matrix is the identity matrix I. (A-106)
●● All symmetric idempotent matrices except the identity matrix are singular. (A-107)

the final result on idempotent matrices is obtained by observing that the count of the 
nonzero roots of A is also equal to their sum. by combining theorems a.5 and a.7 with 
the result that for an idempotent matrix, the roots are all zero or one, we obtain this result:

●● The rank of a symmetric idempotent matrix is equal to its trace. (A-108)

A.6.11  FACTORING A MATRIX: THE CHOLESKY DECOMPOSITION

in some applications, we shall require a matrix P such that

P′P = A-1.

One choice is

P = �-1/2C′,

so that

P′P = (C′)′(�-1/2)′�-1/2C′ = C�-1C′,

as desired.11 thus, the spectral decomposition of A, A = C�C′ is a useful result for this 
kind of computation.

the Cholesky factorization of a symmetric positive definite matrix is an alternative 
representation that is useful in regression analysis. any symmetric positive definite 
matrix A may be written as the product of a lower triangular matrix L and its transpose 
(which is an upper triangular matrix) L′ = U. thus, A = LU. this result is the 
Cholesky decomposition of A. the square roots of the diagonal elements of L, di, are 
the Cholesky values of A. by arraying these in a diagonal matrix D, we may also write 
A = LD-1D2D-1U = L*D2U*, which is similar to the spectral decomposition in (a-85). 
the usefulness of this formulation arises when the inverse of A is required. Once L is 

10Not all idempotent matrices are symmetric. We shall not encounter any asymmetric ones in our work, however.
11We say that this is “one” choice because if A is symmetric, as it will be in all our applications, there are 
other candidates. the reader can easily verify that C�-1/2C′ = A-1/2 works as well.
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computed, finding A-1 = U-1L-1 is also straightforward as well as extremely fast and 
accurate. Most recently developed econometric software packages use this technique 
for inverting positive definite matrices.

A.6.12  SINGULAR VALUE DECOMPOSITION

a third type of decomposition of a matrix is useful for numerical analysis when the 
inverse is difficult to obtain because the columns of A are “nearly” collinear. any n * K 
matrix A for which n Ú K can be written in the form A = UWV′, where U is an 
orthogonal n * K matrix—that is, U′U = IK—W is a K * K diagonal matrix such that 
wi Ú 0, and V is a K * K matrix such that V′V = IK. this result is called the singular 
value decomposition (SVD) of A, and wi are the singular values of A.12 (Note that if A 
is square, then the spectral decomposition is a singular value decomposition.) as with 
the Cholesky decomposition, the usefulness of the SVD arises in inversion, in this case, 
of A′A. by multiplying it out, we obtain that (A′A)-1 is simply VW-2V′. Once the SVD 
of A is computed, the inversion is trivial. the other advantage of this format is its 
numerical stability, which is discussed at length in Press et al. (2007).

A.6.13  QR DECOMPOSITION

Press et al. (2007) recommend the SVD approach as the method of choice for solving 
least squares problems because of its accuracy and numerical stability. a commonly used 
alternative method similar to the SVD approach is the Qr decomposition. any n * K 
matrix, X, with n Ú K can be written in the form X = QR in which the columns of Q 
are orthonormal (Q′Q = I) and R is an upper triangular matrix. Decomposing X in this 
fashion allows an extremely accurate solution to the least squares problem that does not 
involve inversion or direct solution of the normal equations. Press et al. suggest that this 
method may have problems with rounding errors in problems when X is nearly of short 
rank, but based on other published results, this concern seems relatively minor.13

A.6.14  THE GENERALIZED INVERSE OF A MATRIX

inverse matrices are fundamental in econometrics. although we shall not require them 
much in our treatment in this book, there are more general forms of inverse matrices 
than we have considered thus far. a generalized inverse of a matrix A is another matrix 
A+ that satisfies the following requirements:

1. AA+A = A.
2. A+AA+ = A+.
3. A+A is symmetric.
4. AA+ is symmetric.

12Discussion of the singular value decomposition (and listings of computer programs for the computations) 
may be found in Press et al. (1986).
13the National institute of Standards and technology (NiSt) has published a suite of benchmark problems 
that test the accuracy of least squares computations (http://www.nist.gov/itl/div898/strd). Using these 
problems, which include some extremely difficult, ill-conditioned data sets, we found that the Qr method 
would reproduce all the NiSt certified solutions to 15 digits of accuracy, which suggests that the Qr 
method should be satisfactory for all but the worst problems. NiSt’s benchmark for hard to solve least 
squares problems, the “Filipelli problem,” is solved accurately to at least 9 digits with the Qr method. 
evidently, other methods of least squares solution fail to produce an accurate result.
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a unique A+ can be found for any matrix, whether A is singular or not, or even if A is 
not square.14 the unique matrix that satisfies all four requirements is called the Moore–
Penrose inverse or pseudoinverse of A. if A happens to be square and nonsingular, then 
the generalized inverse will be the familiar ordinary inverse. but if A-1 does not exist, 
then A+ can still be computed.

an important special case is the overdetermined system of equations

Ab = y,

where A has n rows, K 6 n columns, and column rank equal to R … K. Suppose that R 
equals K, so that (A′A)-1 exists. then the Moore–Penrose inverse of A is

A+ = (A′A)-1 A′,

which can be verified by multiplication. a “solution” to the system of equations can be 
written

b = A+y.

this is the vector that minimizes the length of Ab - y. recall this was the solution to 
the least squares problem obtained in Section a.4.4. if y lies in the column space of A, 
this vector will be zero, but otherwise, it will not.

Now suppose that A does not have full rank. the previous solution cannot be 
computed. an alternative solution can be obtained, however. We continue to use the 
matrix A′A. in the spectral decomposition of Section a.6.4, if A has rank R, then there 
are R terms in the summation in (a-85). in (a-102), the spectral decomposition using 
the reciprocals of the characteristic roots is used to compute the inverse. to compute the 
Moore–Penrose inverse, we apply this calculation to A′A, using only the nonzero roots, 
then postmultiply the result by A′. let C1 be the R characteristic vectors corresponding 
to the nonzero roots, which we array in the diagonal matrix, �1. then the Moore–Penrose 
inverse is

A+ = C1�1
-1C1

=A′,

which is very similar to the previous result.
if A is a symmetric matrix with rank R … K, the Moore–Penrose inverse is 

computed precisely as in the preceding equation without postmultiplying by A′. thus, 
for a symmetric matrix A,

A+ = C1�1
-1C1

= ,

where �1
-1 is a diagonal matrix containing the reciprocals of the nonzero roots of A.

A.7 QUADRATIC FORMS AND DEFINITE MATRICES

Many optimization problems involve double sums of the form

 q = a
n

i = 1
a
n

j = 1
xixjaij. (A-109)

14a proof of uniqueness, with several other results, may be found in theil (1983).
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the preceding statements give, in each case, the “if” parts of the theorem. to 
establish the “only if” parts, assume that the condition on the roots does not hold. this 
must lead to a contradiction. For example, if some l can be negative, then y′�y could 
be negative for some y, so A cannot be positive definite.

A.7.1  NONNEGATIVE DEFINITE MATRICES

a case of particular interest is that of nonnegative definite matrices. theorem a.11 
implies a number of related results.

●● if A is nonnegative definite, then � A � Ú 0. (A-111)

Proof: the determinant is the product of the roots, which are nonnegative.

this quadratic form can be written

q = x′Ax

where A is a symmetric matrix. in general, q may be positive, negative, or zero; it depends 
on A and x. there are some matrices, however, for which q will be positive regardless 
of x, and others for which q will always be negative (or nonnegative or nonpositive). 
For a given matrix A,

1. if x′Ax 7 (6) 0 for all nonzero x, then A is positive (negative) definite.
2. if x′Ax Ú (…) 0 for all nonzero x, then A is nonnegative definite or positive 

semidefinite (nonpositive definite).

it might seem that it would be impossible to check a matrix for definiteness, since 
x can be chosen arbitrarily. but we have already used the set of results necessary to do 
so. recall that a symmetric matrix can be decomposed into

A = C�C′.

therefore, the quadratic form can be written as

x′Ax = x′C�C′x.

let y = C′x. then

 x′Ax = y′�y = a
n

i = 1
liyi

2. (A-110)

if li is positive for all i, then regardless of y—that is, regardless of x—q will be positive. 
this case was identified earlier as a positive definite matrix. Continuing this line of 
reasoning, we obtain the following theorem.

THEOREM A.11 Definite Matrices
Let A be a symmetric matrix. If all the characteristic roots of A are positive 
 (negative), then A is positive definite (negative definite). If some of the roots are 
zero, then A is nonnegative (nonpositive) definite if the remainder are positive 
(negative). If A has both negative and positive roots, then A is indefinite.
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the converse, however, is not true. For example, a 2 * 2 matrix with two negative 
roots is clearly not positive definite, but it does have a positive determinant.

●● if A is positive definite, so is A-1. (A-112)

Proof: the roots are the reciprocals of those of A, which are, therefore positive.

●● the identity matrix I is positive definite. (A-113)

Proof: x′Ix = x′x 7 0 if x ≠ 0.

a very important result for regression analysis is

●● if A is n * K with full column rank and n 7 K, then A′A is positive definite and 
AA′ is nonnegative definite. (A-114)

Proof: by assumption, Ax ≠ 0. So x′A′Ax = (Ax)′(Ax) = y′y = a jyj
2 7 0.

a similar proof establishes the nonnegative definiteness of AA′. the difference in the 
latter case is that because A has more rows than columns there is an x such that A′x = 0. 
thus, in the proof, we only have y′y Ú 0. the case in which A does not have full column 
rank is the same as that of AA′.

●● if A is positive definite and B is a nonsingular matrix, then B′AB is positive definite.
 (A-115)

Proof: x′B′ABx = y′Ay 7 0, where y = Bx. but y cannot be 0 because B is 
nonsingular.

Finally, note that for A to be negative definite, all A’s characteristic roots must be 
negative. but, in this case, � A �  is positive if A is of even order and negative if A is of 
odd order.

A.7.2  IDEMPOTENT QUADRATIC FORMS

Quadratic forms in idempotent matrices play an important role in the distributions of 
many test statistics. as such, we shall encounter them fairly often. two central results 
are of interest.

●● every symmetric idempotent matrix is nonnegative definite. (A-116)

Proof: all roots are one or zero; hence, the matrix is nonnegative definite by 
definition.

Combining this with some earlier results yields a result used in determining the sampling 
distribution of most of the standard test statistics.

●● if A is symmetric and idempotent, n * n with rank J, then every quadratic form 
in A can be written 

x′Ax = a J
j = 1yj

2 (A-117)

Proof: this result is (a-110) with l = one or zero.
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the roots of the inverse are the reciprocals of the roots of the original matrix, so the 
theorem can be applied to the inverse matrices.

A.8 CALCULUS AND MATRIX ALGEBRA15

A.8.1  DIFFERENTIATION AND THE TAYLOR SERIES

a variable y is a function of another variable x written

y = f(x), y = g(x), y = y(x),

15For a complete exposition, see Magnus and Neudecker (2007).

A.7.3  COMPARING MATRICES

Derivations in econometrics often focus on whether one matrix is “larger” than another. 
We now consider how to make such a comparison. as a starting point, the two matrices 
must have the same dimensions. a useful comparison is based on

d = x′Ax - x′Bx = x′(A - B)x.

if d is always positive for any nonzero vector, x, then by this criterion, we can say that 
A is larger than B. the reverse would apply if d is always negative. it follows from the 
definition that

 if d 7 0 for all nonzero x, then A - B is positive definite. (A-118)

if d is only greater than or equal to zero, then A - B is nonnegative definite. the 
ordering is not complete. For some pairs of matrices, d could have either sign, depending 
on x. in this case, there is no simple comparison.

a particular case of the general result which we will encounter frequently is.

 
if A is positive definite and B is nonnegative definite,
then A + B Ú A.

 (A-119)

Consider, for example, the “updating formula” introduced in (a-66). this uses a matrix

A = B′B + bb′ Ú B′B.

Finally, in comparing matrices, it may be more convenient to compare their inverses. the 
result analogous to a familiar result for scalars is:

 if A 7 B, then B-1 7 A-1. (A-120)

to establish this intuitive result, we would make use of the following, which is proved in 
goldberger (1964, Chapter 2):

THEOREM A.12 Ordering for Positive Definite Matrices
If A and B are two positive definite matrices with the same dimensions and if every 
characteristic root of A is larger than (at least as large as) the corresponding char-
acteristic root of B when both sets of roots are ordered from largest to smallest, then 
A - B is positive (nonnegative) definite.
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and so on, if each value of x is associated with a single value of y. in this relationship, 
y and x are sometimes labeled the dependent variable and the independent variable, 
respectively. assuming that the function f(x) is continuous and differentiable, we obtain 
the following derivatives:

f′(x) =
dy

dx
, f ″(x) =

d2y

dx2
,

and so on.
a frequent use of the derivatives of f(x) is in the Taylor series approximation. 

a taylor series is a polynomial approximation to f(x). letting x0 be an arbitrarily chosen 
expansion point

 f(x) ≈ f(x0) + a
P

i = 1
 
1
i!

 
dif(x0)

d(x0)i  (x - x0)i. (A-121)

the choice of P, the number of terms, is arbitrary; the more that are used, the more 
accurate the approximation will be. the approximation used most frequently in 
econometrics is the linear approximation,

 f(x) ≈ a + bx, (A-122)

where, by collecting terms in (a-121), a = [f(x0) - f′(x0)x0] and b = f′(x0). 
the  superscript “0” indicates that the function is evaluated at x0. the quadratic 
approximation is

 f(x) ≈ a + bx + gx2, (A-123)

where a = [f 0 - f′0x0 + 1
2 f ″0(x0)2], b = [f′0 - f ″0x0] and g = 1

2 f ″0.
We can regard a function y = f(x1, x2, c, xn) as a scalar-valued function of a 

vector; that is, y = f(x). the vector of partial derivatives, or gradient vector, or simply 
gradient, is

 
0f(x)

0x
= D 0y/0x1

0y/0x2

g
0y/0xn

T = D f1

f2

g
fn

T . (A-124)

the vector g(x) or g is used to represent the gradient. Notice that it is a column vector. 
the shape of the derivative is determined by the denominator of the derivative.

a second derivatives matrix or Hessian is computed as

 H = D 02y/0x10x1 02y/0x10x2 g 02y/0x10xn

02y/0x20x1 02y/0x20x2 g 02y/0x20xn

g g g g
02y/0xn0x1 02y/0xn0x2 g 02y/0xn0xn

T = [fij]. (A-125)

in general, H is a square, symmetric matrix. (the symmetry is obtained for continuous 
and continuously differentiable functions from Young’s theorem.) each column of H is 
the derivative of g with respect to the corresponding variable in x′. therefore,
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H = c 0(0y/0x)

0x1
 
0(0y/0x)

0x2
g

0(0y/0x)

0xn
R =

0(0y/0x)

0(x1 x2 gxn)
=

0(0y/0x)

0x′
=

02y

0x0x′
.

the first-order, or linear taylor series approximation is

 y ≈ f(x0) + a
n

i = 1
fi(x0)(xi - xi

0). (A-126)

the right-hand side is

f(x0) + J 0f(x0)

0x0 R ′
(x - x0) = [f(x0) - g(x0)′x0] + g(x0)′x = [f 0 - g0′x0] + g0′x.

this produces the linear approximation,

y ≈ a + B′x.

the second-order, or quadratic, approximation adds the second-order terms in the 
expansion,

1
2

 a
n

i = 1
a
n

j = 1
f ij

0(xi - xi
0)(xj - xj

0) =
1
2

 (x - x0)′H0(x - x0),

to the preceding one. Collecting terms in the same manner as in (a-126), we have

 y ≈ a + B′x +
1
2

 x′�x, (A-127)

where

a = f 0 - g0′x0 +
1
2

 x0′H0x0, B = g0 - H0x0 and � = H0.

a linear function can be written

y = a′x = x′a = a
n

i = 1
aixi,

so

 
0(a′x)

0x
= a. (A-128)

Note, in particular, that 0(a′x)/0x = a, not a′. in a set of linear functions

y = Ax,

each element yi of y is

yi = ai
=x,

where ai
= is the ith row of A [see (a-14)]. therefore,

0yi

0x
= ai = transpose of ith row of A,

and
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0y2/0x′
g

0yn/0x′

T = D a1
=

a2
=

g
an
=

T .

Collecting all terms, we find that 0Ax/0x′ = A, whereas the more familiar form will be

 
0x′A′

0x
= A′. (A-129)

a quadratic form is written

 x′Ax = a
n

i = 1
a
n

j = 1
xixjaij. (A-130)

For example,

A = J1 3
3 4

R ,

so that

x′Ax = 1x1
2 + 4x2

2 + 6x1x2.

then

 
0x′Ax

0x
= J2x1 + 6x2

6x1 + 8x2
R = J2 6

6 8
R  Jx1

x2
R = 2Ax, (A-131)

which is the general result when A is a symmetric matrix. if A is not symmetric, then

 
0(x′Ax)

0x
= (A + A′)x. (A-132)

referring to the preceding double summation, we find that for each term, the coefficient 
on aij is xixj. therefore,

0(x′Ax)

0aij
= xixj.

the square matrix whose i jth element is xixj is xx′, so

 
0(x′Ax)

0A
= xx′. (A-133)

Derivatives involving determinants appear in maximum likelihood estimation. 
From the cofactor expansion in (a-51),

0 � A �
0aij

= (-1)i + j � Aij � = cij

where � Cji �  is the jith cofactor in A. the inverse of A can be computed using

Aij
-1 =

� Cji �

� A �
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(note the reversal of the subscripts), which implies that

0 ln � A �
0aij

=
(-1)i + j � Aij �

� A �
,

or, collecting terms,

0 ln � A �
0A

= A-1=
.

because the matrices for which we shall make use of this calculation will be symmetric 
in our applications, the transposition will be unnecessary.

A.8.2  OPTIMIZATION

Consider finding the x where f(x) is maximized or minimized. because f′(x) is the slope 
of f(x), either optimum must occur where f′(x) = 0. Otherwise, the function will be 
increasing or decreasing at x. this result implies the first-order or necessary condition 
for an optimum (maximum or minimum):

 
dy

dx
= 0. (A-134)

For a maximum, the function must be concave; for a minimum, it must be convex. the 
sufficient condition for an optimum is.

 
For a maximum, 

d2y

dx2 6 0;

for a minimum, 
d2y

dx2 7 0.
 (A-135)

Some functions, such as the sine and cosine functions, have many local optima, that 
is, many minima and maxima. a function such as (cos x)/(1 + x2), which is a damped 
cosine wave, does as well but differs in that although it has many local maxima, it has 
one, at x = 0, at which f(x) is greater than it is at any other point. thus, x = 0 is the 
global maximum, whereas the other maxima are only local maxima. Certain functions, 
such as a quadratic, have only a single optimum. these functions are globally concave if 
the optimum is a maximum and globally convex if it is a minimum.

For maximizing or minimizing a function of several variables, the first-order 
conditions are

 
0f(x)

0x
= 0. (A-136)

this result is interpreted in the same manner as the necessary condition in the univariate 
case. at the optimum, it must be true that no small change in any variable leads to an 
improvement in the function value. in the single-variable case, d2y/dx2 must be positive 
for a minimum and negative for a maximum. the second-order condition for an optimum 
in the multivariate case is that, at the optimizing value,

 H =
02f(x)

0x 0x′
 (A-137)
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must be positive definite for a minimum and negative definite for a maximum.
in a single-variable problem, the second-order condition can usually be verified by 

inspection. this situation will not generally be true in the multivariate case. as discussed 
earlier, checking the definiteness of a matrix is, in general, a difficult problem. For most 
of the problems encountered in econometrics, however, the second-order condition will 
be implied by the structure of the problem. that is, the matrix H will usually be of such 
a form that it is always definite.

For an example of the preceding, consider the problem

maximizexR = a′x - x′Ax,

where

a′ = (5 4 2),

and

A = C2 1 3
1 3 2
3 2 5

S .

Using some now familiar results, we obtain

 
0R
0x

= a - 2Ax = C5
4
2
S - C4 2 6

2 6 4
6 4 10

S Cx1

x2

x3

S = 0. (A-138)

the solutions are Cx1

x2

x3

S = C4 2 6
2 6 4
6 4 10

S -1C5
4
2
S = C 11.25

1.75
-7.25

S .

the sufficient condition is that

 
02R(x)

0x 0x′
= -2A = C -4 -2 -6

-2 -6 -4
-6 -4 -10

S  (A-139)

must be negative definite. the three characteristic roots of this matrix are -15.746, -4, 
and -0.25403. because all three roots are negative, the matrix is negative definite, as 
required.

in the preceding, it was necessary to compute the characteristic roots of the Hessian 
to verify the sufficient condition. For a general matrix of order larger than 2, this will 
normally require a computer. Suppose, however, that A is of the form

A = B′B,

where B is some known matrix. then, as shown earlier, we know that A will always 
be positive definite (assuming that B has full rank). in this case, it is not necessary to 
calculate the characteristic roots of A to verify the sufficient conditions.
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A.8.3  CONSTRAINED OPTIMIZATION

it is often necessary to solve an optimization problem subject to some constraints on 
the solution. One method is merely to “solve out” the constraints. For example, in the 
maximization problem considered earlier, suppose that the constraint x1 = x2 - x3 is 
imposed on the solution. For a single constraint such as this one, it is possible merely 
to substitute the right-hand side of this equation for x1 in the objective function and 
solve the resulting problem as a function of the remaining two variables. For more 
general constraints, however, or when there is more than one constraint, the method of 
lagrange multipliers provides a more straightforward method of solving the problem. 
We seek to

  maximizex f(x) subject to c1(x) = 0
  c2(x) = 0,
  g
  cJ(x) = 0. (A-140)

the lagrangean approach to this problem is to find the stationary points—that is, the 
points at which the derivatives are zero—of

 L*(x, L) = f(x) + a
J

j = 1
ljcj(x) = f(x) + L′c(x). (A-141)

the solutions satisfy the equations

  
0L*

0x
=

0f(x)

0x
+

0L′c(x)

0x
= 0(n * 1),

  
0L*

0L
= c(x) = 0 (J * 1).  (A-142)

the second term in 0L*/0x is

 
0L′c(x)

0x
=

0c(x)′L
0x

= c 0c(x)′
0x

d  L = C′L, (A-143)

where C is the matrix of derivatives of the constraints with respect to x. the jth row of 
the J * n matrix C is the vector of derivatives of the jth constraint, cj(x), with respect 
to x′. Upon collecting terms, the first-order conditions are

  
0L*

0x
=

0f(x)

0x
+ C′L = 0,

  
0L*

0l
= c(x) = 0.  (A-144)

there is one very important aspect of the constrained solution to consider. in the 
unconstrained solution, we have 0f(x)/0x = 0. From (a-144), we obtain, for a constrained 
solution,

 
0f(x)

0x
= -C′L, (A-145)
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which will not equal 0 unless L = 0. this result has two important implications:

●● the constrained solution cannot be superior to the unconstrained solution. this is 
implied by the nonzero gradient at the constrained solution. (that is, unless C = 0 
which could happen if the constraints were nonlinear. but, even if so, the solution is 
still not better than the unconstrained optimum.)

●● if the lagrange multipliers are zero, then the constrained solution will equal the 
unconstrained solution.

to continue the example begun earlier, suppose that we add the following conditions:

x1 - x2 + x3 = 0,
x1 + x2 + x3 = 0.

to put this in the format of the general problem, write the constraints as c(x) = Cx = 0, 
where

C = J1  -1 1
1 1 1

R .

the lagrangean function is

R*(x, L) = a′x - x′Ax + L′Cx.

Note the dimensions and arrangement of the various parts. in particular, C is a 2 * 3 
matrix, with one row for each constraint and one column for each variable in the 
objective function. the vector of lagrange multipliers thus has two elements, one for 
each constraint. the necessary conditions are

 a - 2Ax + C′L = 0 (three equations), (A-146)

and

Cx = 0 (two equations).

these may be combined in the single equationJ -2A C′
C 0

R J x
L
R = J -a

0
R .

Using the partitioned inverse of (a-74) produces the solutions

 L = -[CA-1C′]-1 CA-1a (A-147)

and

 x =
1
2

 A-1[I - C′(CA-1C′)-1CA-1]a. (A-148)

the two results, (a-147) and (a-148), yield analytic solutions for L and x. For the specific 
matrices and vectors of the example, these are l = [-0.5 -7.5]′, and the constrained 
solution vector, x* = [1.50 -1.5]′. Note that in computing the solution to this sort of 
problem, it is not necessary to use the rather cumbersome form of (a-148). Once l 
is obtained from (a-147), the solution can be inserted in (a-146) for a much simpler 
computation. the solution

x =
1
2

 A-1a +
1
2

 A-1C′L
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suggests a useful result for the constrained optimum:

 constrained solution = unconstrained solution + [2A]-1 C′L. (A-149)

Finally, by inserting the two solutions in the original function, we find that R = 24.375 
and R* = 2.25, which illustrates again that the constrained solution (in this maximization 
problem) is inferior to the unconstrained solution.

A.8.4  TRANSFORMATIONS

if a function is strictly monotonic, then it is a one-to-one function. each y is associated 
with exactly one value of x, and vice versa. in this case, an inverse function exists, which 
expresses x as a function of y, written

y = f(x)

and

x = f -1(y).

an example is the inverse relationship between the log and the exponential functions.
the slope of the inverse function,

J =
dx
dy

=
df -1(y)

dy
= f -1=

(y),

is the Jacobian of the transformation from y to x. For example, if

y = a + bx,

then

x = -
a
b

+ c 1
b
dy

is the inverse transformation and

J =
dx
dy

=
1
b

.

looking ahead to the statistical application of this concept, we observe that if y = f(x) 
were vertical, then this would no longer be a functional relationship. the same x would 
be associated with more than one value of y. in this case, at this value of x, we would 
find that J = 0, indicating a singularity in the function.

if y is a column vector of functions, y = f(x), then

J =
0x
0y′

= D 0x1/0y1 0x1/0y2 g 0x1/0yn

0x2/0y1 0x2/0y2 g 0x2/0yn

f
0xn/0y1 0xn/0y2 g 0xn/0yn

T .

Consider the set of linear functions y = Ax = f(x). the inverse transformation is 
x = f -1(y), which will be

x = A-1y,
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if A is nonsingular. if A is singular, then there is no inverse transformation. let J be the 
matrix of partial derivatives of the inverse functions:

J = J 0xi

0yj
R .

the absolute value of the determinant of J,

abs( � J � ) = abs¢det¢ c 0x
0y′

d ≤ ≤,

is the Jacobian determinant of the transformation from y to x. in the nonsingular case,

abs( � J � ) = abs( � A-1 � ) =
1

abs( � A � )
.

in the singular case, the matrix of partial derivatives will be singular and the determinant 
of the Jacobian will be zero. in this instance, the singular Jacobian implies that A is 
singular or, equivalently, that the transformations from x to y are functionally dependent. 
the singular case is analogous to the single-variable case.

Clearly, if the vector x is given, then y = Ax can be computed from x. Whether x 
can be deduced from y is another question. evidently, it depends on the Jacobian. if the 
Jacobian is not zero, then the inverse transformations exist, and we can obtain x. if not, 
then we cannot obtain x.

A P P E N D I X  B

§
PrObabilitY aND DiStribUtiON tHeOrY

B.1 INTRODUCTION

this appendix reviews the distribution theory used later in the book. a previous course 
in statistics is assumed, so most of the results will be stated without proof. the more 
advanced results in the later sections will be developed in greater detail.

B.2 RANDOM VARIABLES

We view our observation on some aspect of the economy as the outcome or realization 
of a random process that is almost never under our (the analyst’s) control. in the current 
literature, the descriptive (and perspective laden) term data generating process (DPG) 
is often used for this underlying mechanism. the observed (measured) outcomes of the 
process are assigned unique numeric values. the assignment is one to one; each outcome 
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gets one value, and no two distinct outcomes receive the same value. this outcome 
variable, X, is a random variable because, until the data are actually observed, it is 
uncertain what value X will take. Probabilities are associated with outcomes to quantify 
this uncertainty. We usually use capital letters for the “name” of a random variable and 
lowercase letters for the values it takes. thus, the probability that X takes a particular 
value x might be denoted Prob (X = x).

a random variable is discrete if the set of outcomes is either finite in number or 
countably infinite. the random variable is continuous if the set of outcomes is infinitely 
divisible and, hence, not countable. these definitions will correspond to the types of 
data we observe in practice. Counts of occurrences will provide observations on discrete 
random variables, whereas measurements such as time or income will give observations 
on continuous random variables.

B.2.1  PROBABILITY DISTRIBUTIONS

a listing of the values x taken by a random variable X and their associated probabilities 
is a probability distribution, f(x). For a discrete random variable,

 f(x) = Prob(X = x). (B-1)

the axioms of probability require that

1. 0 … Prob(X = x) … 1. (B-2)

2. a x f(x) = 1. (B-3)

For the continuous case, the probability associated with any particular point is zero, 
and we can only assign positive probabilities to intervals in the range (or support) of x. 
the probability density function (pdf), f(x), is defined so that f(x) Ú 0 and

1. Prob(a … x … b) = L
b

a
f(x) dx Ú 0. (B-4)

this result is the area under f(x) in the range from a to b. For a continuous variable,

2. L
+∞

-∞
f(x) dx = 1. (B-5)

if the range of x is not infinite, then it is understood that f(x) = 0 anywhere outside 
the appropriate range. because the probability associated with any individual point is 0,

 Prob(a … x … b) = Prob(a … x 6 b)

 = Prob(a 6 x … b)

 = Prob(a 6 x 6 b).

B.2.2  CUMULATIVE DISTRIBUTION FUNCTION

For any random variable X, the probability that X is less than or equal to a is denoted 
F(a). F(x) is the cumulative density function (cdf), or distribution function. For a discrete 
random variable,

 F(x) = a
 

X … x
f(X) = Prob(X … x). (B-6)
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in view of the definition of f(x),

 f(xi) = F(xi) - F(xi - 1). (B-7)

For a continuous random variable,

 F(x) = L
x

-∞
 f(t) dt, (B-8)

and

 f(x) =
dF(x)

dx
. (B-9)

in both the continuous and discrete cases, F(x) must satisfy the following properties:

1. 0 … F(x) … 1.
2. if x 7 y, then F(x) Ú F(y).
3. F(+ ∞) = 1.
4. F(- ∞) = 0.

From the definition of the cdf,

 Prob(a 6 x … b) = F(b) - F(a). (B-10)

any valid pdf will imply a valid cdf, so there is no need to verify these conditions 
separately.

B.3 EXPECTATIONS OF A RANDOM VARIABLE

DEFINITION B.1 Mean of a Random Variable
The mean, or expected value, of a random variable is

 E[x] = d a
 

x
xf(x) if x is discrete,

Lx
 xf(x) dx if x is continuous.

 (B-11)

the notation a x or 1x, used henceforth, means the sum or integral over the entire 
range of values of x. the mean is usually denoted m. it is a weighted average of the 
values taken by x, where the weights are the respective probabilities or densities. it is 
not necessarily a value actually taken by the random variable. For example, the expected 
number of heads in one toss of a fair coin is 12.

Other measures of central tendency are the median, which is the value m such that 
Prob(X … m) Ú 1

2 and Prob(X Ú m) Ú 1
2, and the mode, which is the value of x at 

which f(x) takes its maximum. the first of these measures is more frequently used than 
the second. loosely speaking, the median corresponds more closely than the mean to 
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DEFINITION B.2 Variance of a Random Variable
The variance of a random variable is

 Var[x] = E[(x - m)2] = d a
 

x
(x - m)2 f(x) if x is discrete,

Lx
(x - m)2f(x) dx if x is continuous.

 (B-13)

the middle of a distribution. it is unaffected by extreme values. in the discrete case, 
the modal value of x has the highest probability of occurring. the modal value for a 
continuous variable will usually not be meaningful.

let g(x) be a function of x. the function that gives the expected value of g(x) is 
denoted

 E[g(x)] = d a
 

x
g(x) Prob(X = x) if X is discrete,

Lx
 g(x)f(x) dx if X is continuous.

 (B-12)

if g(x) = a + bx for constants a and b, then

E[a + bx] = a + bE[x].

an important case is the expected value of a constant a, which is just a.

the variance of x, Var[x], which must be positive, is usually denoted s2. this function 
is a measure of the dispersion of a distribution. Computation of the variance is simplified 
by using the following important result:

 Var[x] = E[x2] - m2. (B-14)

a convenient corollary to (b-14) is

 E[x2] = s2 + m2. (B-15)

by inserting y = a + bx in (b-13) and expanding, we find that

 Var[a + bx] = b2 Var[x], (B-16)

which implies, for any constant a, that

 Var[a] = 0. (B-17)

to describe a distribution, we usually use s, the positive square root, which is the 
standard deviation of x. the standard deviation can be interpreted as having the same 
units of measurement as x and m. For any random variable x and any positive constant 
k, the Chebychev inequality states that

 Prob(m - ks … x … m + ks) Ú 1 -
1
k2. (B-18)
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two other measures often used to describe a probability distribution are

skewness = E[(x - m)3],

and

kurtosis = E[(x - m)4].

Skewness is a measure of the asymmetry of a distribution. For symmetric distributions,

f(m - x) = f(m + x),

and

skewness = 0.

For asymmetric distributions, the skewness will be positive if the “long tail” is in the 
positive direction. Kurtosis is a measure of the thickness of the tails of the distribution. 
a shorthand expression for other central moments is

mr = E[(x - m)r].

because mr tends to explode as r grows, the normalized measure, mr /sr, is often 
used for description. two common measures are

skewness coefficient =
m3

s3,

and

degree of excess =
m4

s4 - 3.

the second is based on the normal distribution, which has excess of zero. (the value 3 
is sometimes labeled the “mesokurtotic” value.)

For any two functions g1(x) and g2(x),

 E[g1(x) + g2(x)] = E[g1(x)] + E[g2(x)]. (B-19)

For the general case of a possibly nonlinear g(x),

 E[g(x)] = 1x g(x)f(x) dx, (B-20)

and

 Var[g(x)] = 1x(g(x) - E[g(x)])2f(x) dx. (B-21)

(For convenience, we shall omit the equivalent definitions for discrete variables in the 
following discussion and use the integral to mean either integration or summation, 
whichever is appropriate.)

a device used to approximate E[g(x)] and Var[g(x)] is the linear taylor series 
approximation:

 g(x) ≈ [g(x0) - g′(x0)x0] + g′(x0)x = b1 + b2x = g*(x). (B-22)
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if the approximation is reasonably accurate, then the mean and variance of g*(x) will 
be approximately equal to the mean and variance of g(x). a natural choice for the 
expansion point is x0 = m = E(x). inserting this value in (b-22) gives

 g(x) ≈ [g(m) - g′(m)m] + g′(m)x, (B-23)

so that

 E[g(x)] ≈ g(m), (B-24)

and

 Var[g(x)] ≈ [g′(m)]2 Var[x]. (B-25)

a point to note in view of (b-22) to (b-24) is that E[g(x)] will generally not equal 
g(E[x]). For the special case in which g(x) is concave—that is, where g″(x) 6 0—we know 
from Jensen’s inequality that E[g(x)] … g(E[x]). For example, E[log(x)] … log(E[x]). 
the result in (b-25) forms the basis for the delta method.

B.4 SOME SPECIFIC PROBABILITY DISTRIBUTIONS

Certain experimental situations naturally give rise to specific probability distributions. 
in the majority of cases in economics, however, the distributions used are merely models 
of the observed phenomena. although the normal distribution, which we shall discuss 
at length, is the mainstay of econometric research, economists have used a wide variety 
of other distributions. a few are discussed here.1

B.4.1  THE NORMAL AND SKEW NORMAL DISTRIBUTIONS

the general form of the normal distribution with mean m and standard deviation s is

 f(x �  m, s2) =
1

s22p
 e-1/2[(x - m)2/s2]. (B-26)

this result is usually denoted x ∼ N[m, s2]. the standard notation x ∼ f(x) is used to 
state that “x has probability distribution f(x).” among the most useful properties of the 
normal distribution is its preservation under linear transformation.

 if x ∼ N[m, s2],  then (a + bx) ∼ N[a + bm, b2s2]. (B-27)

One particularly convenient transformation is a = -m/s and b = 1/s. the resulting 
variable z = (x - m)/s has the standard normal distribution, denoted N[0, 1], with 
density

 f(z) =
122p

 e-z2/2. (B-28)

1a much more complete listing appears in Maddala (1977a, Chapters 3 and 18) and in most mathematical 
statistics textbooks. See also Poirier (1995) and Stuart and Ord (1989). another useful reference is evans, 
Hastings, and Peacock (2010). Johnson et al. (1974, 1993, 1994, 1995, 1997) is an encyclopedic reference on 
the subject of statistical distributions.
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FIGURE B.1  The Normal Distribution.
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the specific notation f(z) is often used for this density and Φ(z) for its cdf. it follows 
from the definitions above that if x ∼ N[m, s2], then

f(x) =
1
s

 f c x - m

s
d .

Figure b.1 shows the densities of the standard normal distribution and the normal 
distribution with mean 0.5, which shifts the distribution to the right, and standard 
deviation 1.3, which, it can be seen, scales the density so that it is shorter but wider. (the 
graph is a bit deceiving unless you look closely; both densities are symmetric.)

tables of the standard normal cdf appear in most statistics and econometrics 
textbooks. because the form of the distribution does not change under a linear 
transformation, it is not necessary to tabulate the distribution for other values of m and 
s. For any normally distributed variable,

 Prob(a … x … b) = Proba a - m

s
…

x - m

s
…

b - m

s
b , (B-29)

which can always be read from a table of the standard normal distribution. in addition, 
because the distribution is symmetric, Φ(-z) = 1 - Φ(z). Hence, it is not necessary to 
tabulate both the negative and positive halves of the distribution.
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FIGURE B.2  Skew Normal Distributions.
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the centerpiece of the stochastic frontier literture is the skew normal distribution.  
See examples 12.2 and 14.8 and Section 19.2.4.) the density of the skew normal 
random variable is

f(x �m, s, l) =
2
s

 fa e
s
bΦa -le

s
b , e = (x - m).

the skew normal reverts to the standard normal if l = 0. the random variable arises 
as the density of e = svv - su � u �  where u and v are standard normal variables, in 
which case l = su/sv and s2 = sv

2 + su
2. (if su � u �  is added, then -l becomes +l in the 

density. Figure b.2 shows three cases of the distribution, l = 0, 2, and 4. this asymmetric 

distribution has mean -
sl21 + l2

 A 2
p

 and variance 
s2

1 + l2 ¢1 + l2ap - 2
p

b ≤ (which 

revert to 0 and l2 if l = 0). these are -su(2/p)1/2 and sv
 2 + su

 2(p - 2)/p for the 
convolution form.

B.4.2  THE CHI-SQUARED, t, AND F DISTRIBUTIONS

the chi-squared, t, and F distributions are derived from the normal distribution. they 
arise in econometrics as sums of n or n1 and n2 other variables. these three distributions 
have associated with them one or two “degrees of freedom” parameters, which for our 
purposes will be the number of variables in the relevant sum.
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the first of the essential results is

●● if z ∼ N[0, 1], then x = z2 ∼ chi@squared[1]—that is, chi-squared with one degree 
of freedom—denoted

 z2 ∼ x2[1]. (B-30)

this distribution is a skewed distribution with mean 1 and variance 2. the second 
result is

●● if x1, c, xn are n independent chi-squared[1] variables, then

 a
n

i = 1
xi ∼ chi@squared[n]. (B-31)

the mean and variance of a chi-squared variable with n degrees of freedom are n 
and 2n, respectively. a number of useful corollaries can be derived using (b-30) and 
(b-31).

●● if zi, i = 1, c, n, are independent N[0, 1] variables, then

 a
n

i = 1
zi

2 ∼ x2[n]. (B-32)

●● if zi, i = 1, c, n, are independent N[0, s2] variables, then

 a
n

i = 1
(zi/s)2 ∼ x2[n]. (B-33)

●● if x1 and x2 are independent chi-squared variables with n1 and n2 degrees of freedom, 
respectively, then

 x1 + x2 ∼ x2[n1 + n2]. (B-34)

this result can be generalized to the sum of an arbitrary number of independent 
chi-squared variables.

Figure b.3 shows the chi-squared densities for 3 and 5 degrees of freedom. the 
amount of skewness declines as the number of degrees of freedom rises. Unlike the 
normal distribution, a separate table is required for the chi-squared distribution for 
each value of n. typically, only a few percentage points of the distribution are tabulated 
for each n.

●● the chi-squared[n] random variable has the density of a gamma variable [See (b-39)] 
with parameters l = 1�2 and P = n/2.

●● if n1 and n2 are two independent chi-squared variables with degrees of freedom 
parameters x1 and x1 respectively, then the ratio

 F [n1, n2] =
x1/n1

x2/n2
 (B-35)

has the F distribution with n1 and n2 degrees of freedom.
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FIGURE B.3  Chi-Squared Distributions.
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the two degrees of freedom parameters n1 and n2 are the “numerator and denominator 
degrees of freedom,” respectively. tables of the F distribution must be computed for 
each pair of values of (n1, n2). as such, only one or two specific values, such as the 
95 percent and 99 percent upper tail values, are tabulated in most cases.

●● if z is an N[0, 1] variable and x is x2[n] and is independent of z, then the ratio

 t[n] =
z2x/n

 (B-36)

has the t distribution with n degrees of freedom.

the t distribution has the same shape as the normal distribution but has thicker tails. 
Figure b.4 illustrates the t distributions with 3 and 10 degrees of freedom with the 
standard normal distribution. two effects that can be seen in the figure are how the 
distribution changes as the degrees of freedom increases, and, overall, the similarity 
of the t distribution to the standard normal. this distribution is tabulated in the 
same manner as the chi-squared distribution, with several specific cutoff points 
corresponding to specified tail areas for various values of the degrees of freedom 
parameter.

Comparing (b-35) with n1 = 1 and (b-36), we see the useful relationship between 
the t and F distributions:

●● if t ∼ t[n], then t2 ∼ F[1, n].

if the numerator in (b-36) has a nonzero mean, then the random variable in (b-36) 
has a noncentral t distribution and its square has a noncentral F distribution. these 
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FIGURE B.4  The Standard Normal, t[3], and t [10] Distributions.
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distributions arise in the F tests of linear restrictions [see (5-16)] when the restrictions 
do not hold as follows:

1. Noncentral chi-squared distribution. if z has a normal distribution with mean m 
and standard deviation 1, then the distribution of z2 is noncentral chi-squared with 
parameters 1 and m2/2.
a. if z ∼ N[M, �] with J elements, then z′ �-1 z has a noncentral chi-squared 

distribution with J degrees of freedom and noncentrality parameter M′�-1 M/2, 
which we denote X*

2[J, M′ �-1 M/2].
b. if z ∼ N[M, I] and M is an idempotent matrix with rank J, then 

z′Mz ∼ X*
2[J, M′MM/2].

2. Noncentral F distribution. if X1 has a noncentral chi-squared distribution 
with noncentrality parameter l and degrees of freedom n1 and X2 has a central 
chi-squared distribution with degrees of freedom n2 and is independent of X1, 
then

F* =
X1/n1

X2/n2

has a noncentral F distribution with parameters n1, n2, and l. (the denominator 
chi-squared could also be noncentral, but we shall not use any statistics with doubly 
noncentral distributions.) in each of these cases, the statistic and the distribution 
are the familiar ones, except that the effect of the nonzero mean, which induces the 
noncentrality, is to push the distribution to the right.

B.4.3  DISTRIBUTIONS WITH LARGE DEGREES OF FREEDOM

the chi-squared, t, and F distributions usually arise in connection with sums of sample 
observations. the degrees of freedom parameter in each case grows with the number of 
observations. We often deal with larger degrees of freedom than are shown in the tables. 
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thus, the standard tables are often inadequate. in all cases, however, there are limiting 
distributions that we can use when the degrees of freedom parameter grows large. the 
simplest case is the t distribution. the t distribution with infinite degrees of freedom is 
equivalent (identical) to the standard normal distribution. beyond about 100 degrees 
of freedom, they are almost indistinguishable.

For degrees of freedom greater than 30, a reasonably good approximation for the 
distribution of the chi-squared variable x is

 z = (2x)1/2 - (2n - 1)1/2, (B-37)

which is approximately standard normally distributed. thus,

Prob(x2[n] … a) ≈ Φ[(2a)1/2 - (2n - 1)1/2].

another simple approximation that relies on the central limit theorem would be 
z = (x - n)/(2n)1/2.

as used in econometrics, the F distribution with a large-denominator degrees of 
freedom is common. as n2 becomes infinite, the denominator of F converges identically 
to one, so we can treat the variable

 x = n1F (B-38)

as a chi-squared variable with n1 degrees of freedom. the numerator degrees of freedom 
will typically be small, so this approximation will suffice for the types of applications we 
are likely to encounter.2 if not, then the approximation given earlier for the chi-squared 
distribution can be applied to n1 F.

B.4.4  SIZE DISTRIBUTIONS: THE LOGNORMAL DISTRIBUTION

in modeling size distributions, such as the distribution of firm sizes in an industry or the 
distribution of income in a country, the lognormal distribution, denoted LN[m, s2], has 
been particularly useful.3 the density is

f(x) =
122p sx

 e-1/2[(ln x - m)/s]2
, x 7 0.

a lognormal variable x has

E[x] = em + s2/2,

and

Var[x] = e2m + s2
 (es

2
- 1).

the relation between the normal and lognormal distributions is

if y ∼ LN[m, s2], ln y ∼ N[m, s2].

2See Johnson, Kotz, and balakrishnan (1994) for other approximations.
3a study of applications of the lognormal distribution appears in aitchison and brown (1969).
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a useful result for transformations is given as follows:
if x has a lognormal distribution with mean u and variance l2, then

ln x ∼ N(m, s2), where m = ln u2 - 1
2 ln(u2 + l2) and s2 = ln(1 + l2/u2).

because the normal distribution is preserved under linear transformation,

if y ∼ LN[m, s2], then ln yr ∼ N[rm, r2s2].

if y1 and y2 are independent lognormal variables with y1 ∼ LN[m1, s1
2] and 

y2 ∼ LN[m2, s2
2], then

y1y2 ∼ LN[m1 + m2, s1
2 + s2

2].

B.4.5  THE GAMMA AND EXPONENTIAL DISTRIBUTIONS

the gamma distribution has been used in a variety of settings, including the study of 
income distribution4 and production functions.5 the general form of the distribution is

 f(x) =
lP

Γ(P)
 e-lxxP - 1, x Ú 0, l 7 0, P 7 0. (B-39)

Many familiar distributions are special cases, including the exponential distribution 
(P = 1) and chi-squared (l = 1

2, P = n
2). the Erlang distribution results if P is a positive 

integer. the mean is P/l, and the variance is P/l2. the inverse gamma distribution is the 
distribution of 1/x, where x has the gamma distribution. Using the change of variable, 
y = 1/x, the Jacobian is � dx/dy � = 1/y2. Making the substitution and the change of 
variable, we find

f(y) =
lP

Γ(P)
 e-l/y y-(P + 1), y Ú 0, l 7 0, P 7 0.

the density is defined for positive P. However, the mean is l/(P - 1) which is 
defined only if P 7 1 and the variance is l2/[(P - 1)2(P - 2)] which is defined only 
for P 7 2.

B.4.6  THE BETA DISTRIBUTION

Distributions for models are often chosen on the basis of the range within which the 
random variable is constrained to vary. the lognormal distribution, for example, is 
sometimes used to model a variable that is always nonnegative. For a variable constrained 
between 0 and c 7 0, the beta distribution has proved useful. its density is

 f(x) =
1
c

 
Γ(a + b)

Γ(a)Γ(b)
 a x

c
b
a - 1

a1 -
x
c
b
b - 1

. (B-40)

this functional form is extremely flexible in the shapes it will accommodate. it is 
symmetric if a = b, strandard uniform if a = b = c = 1, asymmetric otherwise, and 

4Salem and Mount (1974).
5greene (1980a).
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FIGURE B.5  Standard Normal and Logistic Densities.
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can be hump-shaped or U-shaped. the mean is ca/(a + b), and the variance is 
c2ab/[(a + b + 1)(a + b)2]. the beta distribution has been applied in the study of labor 
force participation rates.6

B.4.7  THE LOGISTIC DISTRIBUTION

the normal distribution is ubiquitous in econometrics. but researchers have found that 
for some microeconomic applications, there does not appear to be enough mass in the 
tails of the normal distribution; observations that a model based on normality would 
classify as “unusual” seem not to be very unusual at all. One approach has been to use 
thicker-tailed symmetric distributions. the logistic distribution is one candidate; the cdf 
for a logistic random variable is denoted

F(x) = Λ(x) =
1

1 + e-x.

the density is f(x) = Λ(x)[1 - Λ(x)]. the mean and variance of this random variable are 
zero and p2/3. Figure b.5 compares the logistic distribution to the standard normal. the 
logistic density has a greater variance and thicker tails than the normal. the standardized 
variable, z/(p/31/2) is very close to the t[8] variable.

B.4.8  THE WISHART DISTRIBUTION

the Wishart distribution describes the distribution of a random matrix obtained as

W = a
n

i = 1
(xi - M)(xi - M)′,

6Heckman and Willis (1976).
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where xi is the ith of n K element random vectors from the multivariate normal 
distribution with mean vector, M, and covariance matrix, �. this is a multivariate 
counterpart to the chi-squared distribution. the density of the Wishart random matrix is

f(W) =
exp c -

1
2

 trace(�-1 W) d � W � -1
2 (n - K - 1)

2nK/2 � � � K/2 pK(K - 1)/4 �j = 1
K Γan + 1 - j

2
b

.

the mean matrix is n�. For the individual pairs of elements in W,

Cov[wij, wrs] = n(sirsjs + sissjr).

B.4.9  DISCRETE RANDOM VARIABLES

Modeling in economics frequently involves random variables that take integer values. 
in these cases, the distributions listed thus far only provide approximations that are 
sometimes quite inappropriate. We can build up a class of models for discrete random 
variables from the Bernoulli distribution for a single binomial outcome (trial)

Prob(x = 1) = a,

Prob(x = 0) = 1 - a,

where 0 … a … 1. the modeling aspect of this specification would be the assumptions 
that the success probability a is constant from one trial to the next and that successive 
trials are independent. if so, then the distribution for x successes in n trials is the binomial 
distribution,

Prob(X = x) = ¢n
x
≤ax(1 - a)n - x, x = 0, 1, p , n.

the mean and variance of x are na and na(1 - a), respectively. 
if the number of trials becomes large at the same time that the success probability 

becomes small so that the mean na is stable, then, the limiting form of the binomial 
distribution is the Poisson distribution,

Prob(X = x) =
e-llx

x!
.

the Poisson distribution has seen wide use in econometrics in, for example, modeling 
patents, crime, recreation demand, and demand for health services. (See Chapter 18.) 
an example is shown in Figure b.6.

B.5 THE DISTRIBUTION OF A FUNCTION OF A RANDOM VARIABLE

We considered finding the expected value of a function of a random variable. it is fairly 
common to analyze the random variable itself, which results when we compute a function 
of some random variable. there are three types of transformation to consider. One discrete 
random variable may be transformed into another, a continuous variable may be transformed 
into a discrete one, and one continuous variable may be transformed into another.
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FIGURE B.6  The Poisson[3] probability Distribution.
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the simplest case is the first one. the probabilities associated with the new variable 
are computed according to the laws of probability. if y is derived from x and the function 
is one to one, then the probability that Y = y(x) equals the probability that X = x. 
if several values of x yield the same value of y, then Prob (Y = y) is the sum of the 
corresponding probabilities for x.

the second type of transformation is illustrated by the way individual data on 
income are typically obtained in a survey. income in the population can be expected to 
be distributed according to some skewed, continuous distribution such as the one shown 
in Figure b.7.

Data are often reported categorically, as shown in the lower part of the figure. thus, 
the random variable corresponding to observed income is a discrete transformation 
of the actual underlying continuous random variable. Suppose, for example, that the 
transformed variable y is the mean income in the respective interval. then

 Prob(Y = m1) = P(- ∞ 6 X … a),

 Prob(Y = m2) = P(a 6 X … b),

 Prob(Y = m3) = P(b 6 X … c),

and so on, which illustrates the general procedure.
if x is a continuous random variable with pdf fx(x) and if y = g(x) is a continuous 

monotonic function of x, then the density of y is obtained by using the change of variable 
technique to find the cdf of y:

Prob(y … b) = 1b
-∞ fx(g-1(y)) � g-1=

(y) � dy.

this equation can now be written as

Prob(y … b) = 1b
-∞ fy(y) dy.
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FIGURE B.7  Censored Distribution.
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Hence,

 fy(y) = fx(g-1(y)) � g-1=
(y) � . (B-41)

to avoid the possibility of a negative pdf if g(x) is decreasing, we use the absolute value 
of the derivative in the previous expression. the term � g-1=

(y) �  must be nonzero for the 
density of y to be nonzero. in words, the probabilities associated with intervals in the 
range of y must be associated with intervals in the range of x. if the derivative is zero, 
the correspondence y = g(x) is vertical, and hence all values of y in the given range are 
associated with the same value of x. this single point must have probability zero.

One of the most useful applications of the preceding result is the linear transformation 
of a normally distributed variable. if x ∼ N[m, s2], then the distribution of

y =
x - m

s

is found using the preceding result. First, the derivative is obtained from the inverse 
transformation

y =
x
s

-
m

s
  1 x = sy + m 1 f -1=

(y) =
dx
dy

= s.
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therefore,

fy(y) =
122ps

 e-[(sy + m) - m]2/(2s2) �s � =
122p

 e-y2/2.

this is the density of a normally distributed variable with mean zero and unit 
standard deviation one. this is the result which makes it unnecessary to have separate 
tables for the different normal distributions which result from different means and 
variances.

B.6 REPRESENTATIONS OF A PROBABILITY DISTRIBUTION

the probability density function (pdf) is a natural and familiar way to formulate the 
distribution of a random variable. but, there are many other functions that are used to 
identify or characterize a random variable, depending on the setting. in each of these 
cases, we can identify some other function of the random variable that has a one-to-
one relationship with the density. We have already used one of these quite heavily 
in the preceding discussion. For a random variable which has density function f(x), 
the distribution function, F(x), is an equally informative function that identifies the 
distribution; the relationship between f(x) and F(x) is defined in (b-6) for a discrete 
random variable and (b-8) for a continuous one. We now consider several other related 
functions.

For a continuous random variable, the survival function  is 
S(x) = 1 - F(x) = Prob[X Ú x]. this function is widely used in epidemiology, where 
x is time until some transition, such as recovery from a disease. the hazard function for 
a random variable is

h(x) =
f(x)

S(x)
=

f(x)

1 - F(x)
.

the hazard function is a conditional probability;

h(x) = limtT0 Prob(X … x … X + t � X Ú x).

Hazard functions have been used in econometrics in studying the duration of spells, or 
conditions, such as unemployment, strikes, time until business failures, and so on. the 
connection between the hazard and the other functions is h(x) = -d ln S(x)/dx. as an 
exercise, you might want to verify the interesting special case of h(x) = 1/l, a constant—
the only distribution which has this characteristic is the exponential distribution noted 
in Section b.4.5.

For the random variable X, with probability density function f(x), if the function

M(t) = E[etx]

exists, then it is the moment generating function (MGF). assuming the function exists, 
it can be shown that

drM(t)/dtr � t = 0 = E[xr].

the moment generating function, like the survival and the hazard functions, is a unique 
characterization of a probability distribution. When it exists, the moment generating 
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function has a one-to-one correspondence with the distribution. thus, for example, if we 
begin with some random variable and find that a transformation of it has a particular 
MgF, then we may infer that the function of the random variable has the distribution 
associated with that MgF. a convenient application of this result is the MgF for the 
normal distribution. the MgF for the standard normal distribution is Mz(t) = et2/2.
a useful feature of MgFs is the following:

if x and y are independent, then the MgF of x + y is Mx(t)My(t).
this result has been used to establish the contagion property of some distributions, that 
is, the property that sums of random variables with a given distribution have that same 
distribution. the normal distribution is a familiar example. this is usually not the case. 
it is for Poisson and chi-squared random variables.

One qualification of all of the preceding is that in order for these results to hold, the 
MgF must exist. it will for the distributions that we will encounter in our work, but in 
at least one important case, we cannot be sure of this. When computing sums of random 
variables which may have different distributions and whose specific distributions need 
not be so well behaved, it is likely that the MgF of the sum does not exist. However, 
the characteristic function,

f(t) = E[eitx], i2 = -1,

will always exist, at least for relatively small t. the characteristic function is the device 
used to prove that certain sums of random variables converge to a normally distributed 
variable—that is, the characteristic function is a fundamental tool in proofs of the central 
limit theorem.

B.7 JOINT DISTRIBUTIONS

the joint density function for two random variables X and Y denoted f(x,y) is defined 
so that

 Prob(a … x … b, c … y … d) = c a
a … x … b

a
c … y … d

f(x, y) if x and y are discrete,

1b
a 1d

c  f(x, y) dy dx if x and y are continuous.
 

 (B-42)

the counterparts of the requirements for a univariate probability density are

 

f(x, y) Ú 0,

a
x

a
y

f(x, y) = 1 if x and y are discrete,

1x1y f(x, y) dy dx = 1 if x and y are continuous.

 (B-43)

the cumulative probability is likewise the probability of a joint event:

 F(x, y) = Prob(X … x, Y … y) = c a
X … x

a
Y … y

f(x, y) in the discrete case

1x
-∞ 1y

-∞ f(t, s) ds dt in the continuous case.
 (B-44)

Z03_GREE1366_08_SE_APP.indd   19 3/14/17   9:25 PM



B-20  PArt VI  ✦   Appendices

B.7.1  MARGINAL DISTRIBUTIONS

a marginal probability density or marginal probability distribution is defined with 
respect to an individual variable. to obtain the marginal distributions from the joint 
density, it is necessary to sum or integrate out the other variable:

 fx(x) = c a
y

f(x, y) in the discrete case,

1y f(x, s) ds in the continuous case,
 (B-45)

and similarly for fy(y).
two random variables are statistically independent if and only if their joint density 

is the product of the marginal densities:

 f(x, y) = fx(x)fy(y) 3 x and y are independent. (B-46)

if (and only if) x and y are independent, then the cdf factors as well as the pdf:

 F(x, y) = Fx(x)Fy(y), (B-47)

or

Prob(X … x, Y … y) = Prob(X … x)Prob(Y … y).

B.7.2  EXPECTATIONS IN A JOINT DISTRIBUTION

the means, variances, and higher moments of the variables in a joint distribution are 
defined with respect to the marginal distributions. For the mean of x in a discrete 
distribution,

 E[x] = a
 

x
xfx(x)

 = a
x

 xJa
y

f(x, y) R
  = a

 

x
a

y
xf(x, y).  (B-48)

the means of the variables in a continuous distribution are defined likewise, using 
integration instead of summation:

 E[x] = 1xxfx(x) dx

  = 1x1yxf(x, y) dy dx. (B-49)

Variances are computed in the same manner:

 Var[x] = a
x

(x - E[x])2 fx(x)

  = a
x

a
y

(x - E[x])2 f(x, y). (B-50)
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B.7.3  COVARIANCE AND CORRELATION

For any function g(x, y),

 E[g(x, y)] = c a
x

a
y

g(x, y)f(x, y) in the discrete case,

1x1y g(x, y)f(x, y) dy dx in the continuous case.
 (B-51)

the covariance of x and y is a special case:

 Cov[x, y] = E[(x - mx),(y - my)]

 = E[xy] - mxmy

  = sxy. (B-52)

if x and y are independent, then f(x, y) = fx(x)fy(y) and

 sxy = a
x

a
y

fx(x)fy(y)(x - mx)(y - my)

 = a
x

(x - mx)fx(x)a
y

(y - my)fy(y)

 = E[x - mx]E[y - my]

 = 0.

the sign of the covariance will indicate the direction of covariation of X and Y. 
its magnitude depends on the scales of measurement, however. in view of this fact, a 
preferable measure is the correlation coefficient:

 r[x, y] = rxy =
sxy

sxsy
, (B-53)

where sx and sy are the standard deviations of x and y, respectively. the correlation 
coefficient has the same sign as the covariance but is always between -1 and 1 and is 
thus unaffected by any scaling of the variables.

Variables that are uncorrelated are not necessarily independent. For example, 
in the discrete distribution f(-1, 1) = f(0, 0) = f(1, 1) = 1

3, the correlation is zero, 
but f(1, 1) does not equal fx(1)fy(1) = (1

3)(2
3). an important exception is the joint 

normal distribution discussed subsequently, in which lack of correlation does imply 
independence.

Some general results regarding expectations in a joint distribution, which can be 
verified by applying the appropriate definitions, are

 E[ax + by + c] = a E[x] + bE[y] + c, (B-54)

  Var[ax + by + c] = a2 Var[x] + b2Var[y] + 2ab Cov[x, y]

  = Var[ax + by], (B-55)
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and

 Cov[ax + by, cx + dy] = ac Var[x] + bd Var[y] + (ad + bc)Cov[x, y]. (B-56)

if X and Y are uncorrelated, then

 Var[x + y] = Var[x - y]

  = Var[x] + Var[y]. (B-57)

For any two functions g1(x) and g2(y), if x and y are independent, then

 E[g1(x)g2(y)] = E[g1(x)]E[g2(y)]. (B-58)

B.7.4  DISTRIBUTION OF A FUNCTION OF BIVARIATE RANDOM VARIABLES

the result for a function of a random variable in (b-41) must be modified for a joint 
distribution. Suppose that x1 and x2 have a joint distribution fx(x1, x2) and that y1 and 
y2 are two monotonic functions of x1 and x2:

 y1 = y1(x1, x2), y2 = y2(x1, x2).

because the functions are monotonic, the inverse transformations,

 x1 = x1(y1, y2), x2 = x2(y1, y2),

exist. the Jacobian of the transformations is the matrix of partial derivatives,

J = J0x1/0y1 0x1/0y2

0x2/0y1 0x2/0y2
R = c 0x

0y′
d .

the joint distribution of y1 and y2 is

fy(y1, y2) = fx[x1(y1, y2), x2(y1, y2)]abs( � J � ).

the determinant of the Jacobian must be nonzero for the transformation to exist. 
a zero determinant implies that the two transformations are functionally dependent.

Certainly the most common application of the preceding in econometrics is the linear 
transformation of a set of random variables. Suppose that x1 and x2 are independently 
distributed N[0, 1], and the transformations are

y1 = a1 + b11x1 + b12x2,

y2 = a2 + b21x1 + b22x2.

to obtain the joint distribution of y1 and y2, we first write the transformations as

y = a + Bx.

the inverse transformation is

x = B-1(y - a),

so the absolute value of the determinant of the Jacobian is

abs � J � = abs � B-1 � =
1

abs � B �
.
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the joint distribution of x is the product of the marginal distributions since they are 
independent. thus,

fx(x) = (2p)-1 e-(x1
2 + x2

2)/2 = (2p)-1e-x′x/2.

inserting the results for x(y) and J into fy(y1, y2) gives

fy(y) = (2p)-1 
1

abs � B �
 e-(y - a)′(BB′)-1(y - a)/2.

this bivariate normal distribution is the subject of Section b.9. Note that by formulating 
it as we did earlier, we can generalize easily to the multivariate case, that is, with an 
arbitrary number of variables.

Perhaps the more common situation is that in which it is necessary to find the 
distribution of one function of two (or more) random variables. a strategy that often 
works in this case is to form the joint distribution of the transformed variable and one 
of the original variables, then integrate (or sum) the latter out of the joint distribution 
to obtain the marginal distribution. thus, to find the distribution of y1(x1, x2), we might 
formulate

 y1 = y1(x1, x2)

 y2 = x2.

the absolute value of the determinant of the Jacobian would then be

J = abs 3 0x1

0y1

0x1

0y2

0 1
3 = abs 2 0x1

0y1

2 .
the density of y1 would then be

fy1
(y1) = 1y2

 fx[x1(y1, y2), y2] abs � J �  dy2.

B.8 CONDITIONING IN A BIVARIATE DISTRIBUTION

Conditioning and the use of conditional distributions play a pivotal role in econometric 
modeling. We consider some general results for a bivariate distribution. (all these results 
can be extended directly to the multivariate case.)

in a bivariate distribution, there is a conditional distribution over y for each value 
of x. the conditional densities are

 f(y � x) =
f(x, y)

fx(x)
, (B-59)

and

f(x � y) =
f(x, y)

fy(y)
.
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it follows from (b-46) that.

 if x and y are independent, then f(y � x) = fy(y) and f(x � y) = fx(x). (B-60)

the interpretation is that if the variables are independent, the probabilities of events 
relating to one variable are unrelated to the other. the definition of conditional densities 
implies the important result

  f(x, y) = f(y � x)fx(x) = f(x � y)fy(y). (B-61)

B.8.1  REGRESSION: THE CONDITIONAL MEAN

a conditional mean is the mean of the conditional distribution and is defined by

 E[y � x] = c 1yyf(y � x)dy if y is continuous,

a
y

yf(y � x) if y is discrete.
 (B-62)

the conditional mean function E[y � x] is called the regression of y on x.
a random variable may always be written as

 y = E[y � x] + (y - E[y � x])

 = E[y � x] + e.

B.8.2  CONDITIONAL VARIANCE

a conditional variance is the variance of the conditional distribution:

 Var[y � x] = E[(y - E[y � x])2 � x]

  = 1y(y - E[y � x])2f(y � x)dy, if y is continuous, (B-63)

or

 Var[y � x] = a
y

(y - E[y � x])2f(y � x) if y is discrete. (B-64)

the computation can be simplified by using

 Var[y � x] = E[y2 � x] - (E[y � x])2. (B-65)

the conditional variance is called the scedastic function and, like the regression, is 
generally a function of x. Unlike the conditional mean function, however, it is common 
for the conditional variance not to vary with x. We shall examine a particular case. this 
case does not imply, however, that Var[y � x] equals Var[y], which will usually not be 
true. it implies only that the conditional variance is a constant. the case in which the 
conditional variance does not vary with x is called homoscedasticity (same variance).

B.8.3  RELATIONSHIPS AMONG MARGINAL AND CONDITIONAL MOMENTS

Some useful results for the moments of a conditional distribution are given in the 
following theorems.
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THEOREM B.4 Decomposition of Variance
In a joint distribution,

 Var[y] = Varx[E[y � x]] + Ex[Var[y � x]]. (B-69)

THEOREM B.1 Law of Iterated Expectations

 E[y] = Ex[E[y � x]]. (B-66)

The notation Ex[.] indicates the expectation over the values of x. Note that E[y � x] 
is a function of x.

THEOREM B.2 Covariance
In any bivariate distribution,

 Cov[x, y] = Covx[x, E[y � x]] = 1x(x - E[x]) E[y � x]fx(x) dx. (B-67)

(Note that this is the covariance of x and a function of x.)

THEOREM B.3 Moments in a Linear Regression

If E[y � x] = a + bx, then

a = E[y] - bE[x]

and

 b =
Cov[x,y]

Var[x]
. (B-68)

The proof follows from (B-66). Whether E[y � x] is nonlinear or linear, the result 
in (B-68) is the linear projection of y on x. The linear projection is developed in 
Section B.8.5.

the preceding results provide an additional, extremely useful result for the special 
case in which the conditional mean function is linear in x.

the preceding theorems relate to the conditional mean in a bivariate distribution. 
the following theorems, which also appear in various forms in regression analysis, 
describe the conditional variance.
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THEOREM B.5 Residual Variance in a Regression
In any bivariate distribution,

 Ex[Var[y � x]] = Var[y] - Varx[E[y � x]]. (B-70)

THEOREM B.6 Linear Regression and Homoscedasticity
In a bivariate distribution, if E[y � x] = a + bx and if Var[y � x] is a constant, then

 Var[y � x] = Var[y](1 - Corr2[y, x]) = sy
2(1 - rxy

2 ). (B-71)

The proof is straightforward using Theorems B.2 to B.4.

the notation Varx[.] indicates the variance over the distribution of x. this equation 
states that in a bivariate distribution, the variance of y decomposes into the variance of 
the conditional mean function plus the expected variance around the conditional mean.

On average, conditioning reduces the variance of the variable subject to the 
conditioning. For example, if y is homoscedastic, then we have the unambiguous 
result that the variance of the conditional distribution(s) is less than or equal to the 
unconditional variance of y. going a step further, we have the result that appears 
prominently in the bivariate normal distribution (Section b.9).

B.8.4  THE ANALYSIS OF VARIANCE

the variance decomposition result implies that in a bivariate distribution, variation in 
y arises from two sources:

1. Variation because E[y � x] varies with x:

 regression variance = Varx[E[y � x]]. (B-72)

2. Variation because, in each conditional distribution, y varies around the conditional 
mean:

 residual variance = Ex[Var[y � x]]. (B-73)

thus,

 Var[y] = regression variance + residual variance. (B-74)

in analyzing a regression, we shall usually be interested in which of the two parts of the 
total variance, Var[y], is the larger one. a natural measure is the ratio

 coefficient of determination =
regression variance

total variance
. (B-75)
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in the setting of a linear regression, (b-75) arises from another relationship that 
emphasizes the interpretation of the correlation coefficient.

 if E[y � x] = a + bx, then the coefficient of determination = COD = r2, (B-76)

where r2 is the squared correlation between x and y. We conclude that the correlation 
coefficient (squared) is a measure of the proportion of the variance of y accounted for by 
variation in the mean of y given x. it is in this sense that correlation can be interpreted 
as a measure of linear association between two variables.

B.8.5  LINEAR PROJECTION

theorems b.3 (Moments in a linear regression) and b.6 (linear regression and 
Homoscedasticity) begin with an assumption that E[y � x] = a + bx. if the conditional 
mean is not linear, then the results in theorem b.6 do not give the slopes in the 
conditional mean. However, in a bivariate distribution, we can always define the linear 
projection of y on x, as

Proj(y � x) = g0 + g1x

where

g0 = E[y] - g1E[x] and g1 = Cov(x,y)/Var(x).

We can see immediately in theorem b.3 that if the conditional mean function is 
linear, then the conditional mean function (the regression of y on x) is also the linear 
projection. When the conditional mean function is not linear, then the regression and 
the projection functions will be different. We consider an example that bears some 
connection to the formulation of loglinear models. if

y � x ∼ Poisson with conditional mean function exp(bx), y = 0, 1, c,

x ∼ U[0,1]; f(x) = 1, 0 … x … 1,

f(x,y) = f(y � x)f(x) = exp[@exp(bx)][exp(bx)]y/y! * 1,

then, as noted, the conditional mean function is nonlinear; E[y � x] =
exp(bx). the slope in the projection of y on x is g1 = Cov(x,y)/Var[x] =
Cov(x, E[y � x])/Var[x] = Cov(x,exp(bx))/Var[x]. (theorem b.2.) We have E[x] = 1/2 
and Var[x] = 1/12. to obtain the covariance, we require

E[xexp(bx)] = 11
0 x exp(bx)dx = J a x

b
-

1
b2 bexp(bx) R

x = 0

x = 1

and

E[x]E[exp(bx)] = a 1
2
b 11

0  exp(bx)dx = a 1
2
b c exp(bx)

b
d

x = 0

x = 1

= a 1
2
b c exp(b) - 1

b
d .

after collecting terms, g1 = h(b). the constant is g0 = E[y] - h(b)(1/2). 
E[y] = E[E[y � x]] = [exp(b)@1]/b. (theorem b.1.) then, the projection is the linear 
function g0 + g1x while the regression function is the nonlinear function exp(bx). the 
projection can be viewed as a linear approximation to the conditional mean. (Note, it is 
not a linear taylor series approximation.)
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in similar fashion to theorem b.5, we can define the variation around the projection,

Proj.Var[y � x] = Ex[5y - Proj(y � x)62 � x].

by adding and subtracting the regression, E[y � x], in the expression, we find

Proj.Var[y � x] = Var[y � x] + Ex[5Proj(y � x) - E[y � x]62 � x].

this states that the variation of y around the projection consists of the regression 
variance plus the expected squared approximation error of the projection. as a general 
observation, we find, not surprisingly, that when the conditional mean is not linear, the 
projection does not do as well as the regression at prediction of y.

B.9 THE BIVARIATE NORMAL DISTRIBUTION

a bivariate distribution that embodies many of the features described earlier is the 
bivariate normal, which is the joint distribution of two normally distributed variables. 
the density is

 f(x, y) =
1

2psxsy21 - r2
 e-1/2[(ex

2 + ey
2 - 2rexey)/(1 - r2)],

  ex =
x - mx

sx
, ey =

y - my

sy
.  (B-77)

the parameters mx, sx, my, and sy are the means and standard deviations of the marginal 
distributions of x and y, respectively. the additional parameter r is the correlation 
between x and y. the covariance is

 sxy = rsxsy. (B-78)

the density is defined only if r is not 1 or -1, which in turn requires that the two 
variables not be linearly related. if x and y have a bivariate normal distribution, denoted

(x, y) ∼ N2[mx, my, sx
2, sy

2, r],

then

●● the marginal distributions are normal:

 fx(x) = N[mx, sx
2],

          fy(y) = N[my, sy
2]. (B-79)

●● the conditional distributions are normal:

 f(y � x) = N[a + bx, sy
2(1 - r2)],

  a = my - bmx b =
sxy

sx
2 ,  (B-80)

and likewise for f(x � y).
●● x and y are independent if and only if r = 0. the density factors into the product 

of the two marginal normal distributions if r = 0.
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two things to note about the conditional distributions beyond their normality are 
their linear regression functions and their constant conditional variances. the conditional 
variance is less than the unconditional variance, which is consistent with the results of 
the previous section.

B.10 MULTIVARIATE DISTRIBUTIONS

the extension of the results for bivariate distributions to more than two variables is 
direct. it is made much more convenient by using matrices and vectors. the term random 
vector applies to a vector whose elements are random variables. the joint density is f(x), 
whereas the cdf is

 F(x) = 1xn

-∞ 1xn - 1

-∞ g1x1

-∞ f(t)dt1 gdtn - 1 dtn. (B-81)

Note that the cdf is an n-fold integral. the marginal distribution of any one (or 
more) of the n variables is obtained by integrating or summing over the other variables.

B.10.1  MOMENTS

the expected value of a vector or matrix is the vector or matrix of expected values. a 
mean vector is defined as

 M = Dm1

m2

f
mn

T = DE[x1]
E[x2]
f

E[xn]

T = E[x]. (B-82)

Define the matrix

(x - M)(x - M)′ = D (x1 - m1)(x1 - m1) (x1 - m1)(x2 - m2) g (x1 - m1),(xn - mn)
(x2 - m2)(x1 - m1) (x2 - m2)(x2 - m2) g (x2 - m2)(xn - mn)

f f
(xn - mn)(x1 - m1) (xn - mn)(x2 - m2) g (xn - mn)(xn - mn)

T .

the expected value of each element in the matrix is the covariance of the 
two variables in the product. (the covariance of a variable with itself is its variance.) 
thus,

 E[(x - M)(x - M)′] = Ds11 s12 g s1n

s21 s22 g s2n

f f
sn1 sn2 g snn

T = E[xx′] - MM′, (B-83)

which is the covariance matrix of the random vector x. Henceforth, we shall denote the 
covariance matrix of a random vector in boldface, as in

Var[x] = �.
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by dividing sij by sisj, we obtain the correlation matrix:

R = D 1 r12 r13 g r1n

r21 1 r23 g r2n

f f f f
rn1 rn2 rn3 g 1

T .

B.10.2  SETS OF LINEAR FUNCTIONS

Our earlier results for the mean and variance of a linear function can be extended to the 
multivariate case. For the mean,

 E[a1x1 + a2x2 + g + anxn] = E[a′x]

 = a1 E[x1] + a2E[x2] + g + anE[xn]

 = a1m1 + a2m2 + g + anmn

 = a′M. (B-84)

For the variance,

 Var[a′x] = E[(a′x - E[a′x])2]

 = E[5a′(x - E[x])62]

 = E[a′(x - M)(x - M)′ a]

as E[x] = M and a′(x - M) = (x - M)′a. because a is a vector of constants,

 Var[a′x] = a′E[(x - M)(x - M)′]a = a′�a = a
n

i = 1
a
n

j = 1
aiajsij (B-85)

it is the expected value of a square, so we know that a variance cannot be negative. as 
such, the preceding quadratic form is nonnegative, and the symmetric matrix � must be 
nonnegative definite.

in the set of linear functions y = Ax, the ith element of y is yi = aix, where ai is the 
ith row of A [see result (a-14)]. therefore,

E[yi] = aiM.

Collecting the results in a vector, we have

 E[Ax] = AM. (B-86)

For two row vectors ai and aj,

Cov[aix, ajx] = ai �aj
=.

because ai�aj
= is the ijth element of A�A′,

 Var[Ax] = A�A′. (B-87)

this matrix will be either nonnegative definite or positive definite, depending on the 
column rank of A.
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B.10.3  NONLINEAR FUNCTIONS: THE DELTA METHOD

Consider a set of possibly nonlinear functions of x, y = g(x). each element of y can be 
approximated with a linear taylor series. let ji be the row vector of partial derivatives 
of the ith function with respect to the n elements of x:

 ji(x) =
0gi(x)

0x′
=

0yi

0x′
. (B-88)

then, proceeding in the now familiar way, we use M, the mean vector of x, as the 
expansion point, so that ji(M) is the row vector of partial derivatives evaluated at M. then

 gi(x) ≈ gi(M) + ji(M)(x - M). (B-89)

From this we obtain

 E[gi(x)] ≈ gi(M), (B-90)

 Var[gi(x)] ≈ ji(M)�ji(M)′, (B-91)

and

 Cov[gi(x), gj(x)] ≈ ji(M)�jj(M)′. (B-92)

these results can be collected in a convenient form by arranging the row vectors 
ji(M) in a matrix J(M). then, corresponding to the preceding equations, we have

 E[g(x)] ≈ g(M), (B-93)

 Var[g(x)] ≈ J(M)�J(M)′. (B-94)

the matrix J(M) in the last preceding line is 0y/0x′ evaluated at x = M.

B.11 THE MULTIVARIATE NORMAL DISTRIBUTION

the foundation of most multivariate analysis in econometrics is the multivariate normal 
distribution. let the vector (x1, x2, c, xn)′ = x be the set of n random variables, M 
their mean vector, and � their covariance matrix. the general form of the joint density is

 f(x) = (2p)-n/2 � � � -1/2e(-1/2)(x - M)′�-1(x - M). (B-95)

if R is the correlation matrix of the variables and Rij = sij/(sisj), then

 f(x) = (2p)-n/2(s1s2 gsn)-1 � R � -1/2 e(-1/2)E′R-1E, (B-96)

where ei = (xi - mi)/si.7

7this result is obtained by constructing �, the diagonal matrix with si as its ith diagonal element. then, 
R = �-1��-1, which implies that �-1 = �-1R-1�-1. inserting this in (b-95) yields (b-96). Note that the ith 
element of �-1(x - M) is (xi - mi)/si.

Z03_GREE1366_08_SE_APP.indd   31 3/14/17   9:25 PM



B-32  PArt VI  ✦   Appendices

THEOREM B.7 Marginal and Conditional Normal Distributions
If [x1, x2] have a joint multivariate normal distribution, then the marginal distri-
butions are

 x1 ∼ N(M1, �11), (B-100)

and

 x2 ∼ N(M2, �22). (B-101)

The conditional distribution of x1 given x2 is normal as well:

 x1 � x2 ∼ N(M1.2, �11.2), (B-102)

where

 M1.2 = M1 + �12�22
-1(x2 - M2), (B-102a)

 �11.2 = �11 - �12�22
-1�21. (B-102b)

two special cases are of interest. if all the variables are uncorrelated, then rij = 0 
for i ≠ j. thus, R = I, and the density becomes

 f(x) = (2p)-n/2(s1s2 gsn)-1e-E′E/2

  = f(x1)f(x2) gf(xn) = q
n

i = 1
f(xi). (B-97)

as in the bivariate case, if normally distributed variables are uncorrelated, then they are 
independent. if si = s and M = 0, then xi ∼ N[0, s2] and ei = xi/s, and the density 
becomes

 f(x) = (2p)-n/2(s2)-n/2e-x′x/(2s2). (B-98)

Finally, if s = 1,

 f(x) = (2p)-n/2e-x′x/2. (B-99)

this distribution is the multivariate standard normal, or spherical normal distribution.

B.11.1  MARGINAL AND CONDITIONAL NORMAL DISTRIBUTIONS

let x1 be any subset of the variables, including a single variable, and let x2 be the 
remaining variables. Partition M and � likewise so that

M = JM1

M2
R and � = J�11 �12

�21 �22
R .

then the marginal distributions are also normal. in particular, we have the following 
theorem.
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THEOREM B.7 (continued)

Proof: We partition M and � as shown earlier and insert the parts in (B-95). To 
construct the density, we use (A-72) to partition the determinant,

� � � = � �22 � � �11 - �12�22
-1�21 � ,

and (A-74) to partition the inverse,J�11 �12

�21 �22
R -1

= J�11.2
-1 - �11.2

-1 B
-B′�11.2

-1 �22
-1 + B′�11.2

-1 B
R .

For simplicity, we let

B = �12�22
-1.

Inserting these in (B-95) and collecting terms produces the joint density as a 
product of two terms:

f(x1, x2) = f1.2(x1 � x2)f2(x2).

The first of these is a normal distribution with mean M1.2 and variance �11.2, 
whereas the second is the marginal distribution of x2.

the conditional mean vector in the multivariate normal distribution is a linear 
function of the unconditional mean and the conditioning variables, and the conditional 
covariance matrix is constant and is smaller (in the sense discussed in Section a.7.3) than 
the unconditional covariance matrix. Notice that the conditional covariance matrix is the 
inverse of the upper left block of �-1; that is, this matrix is of the form shown in (a-74) 
for the partitioned inverse of a matrix.

B.11.2  THE CLASSICAL NORMAL LINEAR REGRESSION MODEL

an important special case of the preceding is that in which x1 is a single variable, y, and 
x2 is K variables, x. then the conditional distribution is a multivariate version of that in 
(b-80) with B = �xx

-1sxy, where sxy is the vector of covariances of y with x2. recall that 
any random variable, y, can be written as its mean plus the deviation from the mean. if 
we apply this tautology to the multivariate normal, we obtain

y = E[y � x] + (y - E[y � x]) = a + B′x + e,

where B is given earlier, a = my - B′Mx, and e has a normal distribution. We thus have, 
in this multivariate normal distribution, the classical normal linear regression model.

B.11.3  LINEAR FUNCTIONS OF A NORMAL VECTOR

any linear function of a vector of joint normally distributed variables is also normally 
distributed. the mean vector and covariance matrix of Ax, where x is normally 
distributed, follow the general pattern given earlier. thus,

 if x ∼ N[M, �], then Ax + b ∼ N[AM + b, A�A′]. (B-103)
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DEFINITION B.3 Orthonormal Quadratic Form
A particular case of (B-103) is the following:

if x ∼ N[0, I] and C is a square matrix such that C′C = I, then C′x ∼ N[0, I].

if A does not have full rank, then A�A′ is singular and the density does not exist in 
the full dimensional space of x although it does exist in the subspace of dimension equal 
to the rank of �. Nonetheless, the individual elements of Ax + b will still be normally 
distributed, and the joint distribution of the full vector is still a multivariate normal.

B.11.4  QUADRATIC FORMS IN A STANDARD NORMAL VECTOR

the earlier discussion of the chi-squared distribution gives the distribution of x′x if x 
has a standard normal distribution. it follows from (a-36) that

 x′x = a
n

i = 1
xi

2 = a
n

i = 1
(xi - x)2 + nx2. (B-104)

We know from (b-32) that x′x has a chi-squared distribution. it seems natural, therefore, 
to invoke (b-34) for the two parts on the right-hand side of (b-104). it is not yet obvious, 
however, that either of the two terms has a chi-squared distribution or that the two 
terms are independent, as required. to show these conditions, it is necessary to derive 
the distributions of idempotent quadratic forms and to show when they are independent.

to begin, the second term is the square of 2n x, which can easily be shown to have 
a standard normal distribution. thus, the second term is the square of a standard normal 
variable and has chi-squared distribution with one degree of freedom. but the first term 
is the sum of n nonindependent variables, and it remains to be shown that the two terms 
are independent.

Consider, then, a quadratic form in a standard normal vector x with symmetric matrix A:

 q = x′Ax. (B-105)

let the characteristic roots and vectors of A be arranged in a diagonal matrix � and an 
orthogonal matrix C, as in Section a.6.3. then

 q = x′C�C′x. (B-106)

by definition, C satisfies the requirement that C′C = I. thus, the vector y = C′x has a 
standard normal distribution. Consequently,

 q = y′�y = a
n

i = 1
liyi

2. (B-107)

if li is always one or zero, then

 q = a
J

j = 1
yj

2, (B-108)
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the rank of a matrix is equal to the number of nonzero characteristic roots it has. 
therefore, the degrees of freedom in the preceding chi-squared distribution equals J, 
the rank of A.

We can apply this result to the earlier sum of squares. the first term is

a
n

i = 1
(xi - x)2 = x′M0x,

where M0 was defined in (a-34) as the matrix that transforms data to mean deviation form:

M0 = I -
1
n

 ii′.

because M0 is idempotent, the sum of squared deviations from the mean has a chi-
squared distribution. the degrees of freedom equals the rank M0, which is not obvious 
except for the useful result in (a-108), that

●● the rank of an idempotent matrix is equal to its trace.  (B-109)

each diagonal element of M0 is 1 - (1/n); hence, the trace is n[1 - (1/n)] = n - 1. 
therefore, we have an application of theorem b.8.

 if x ∼ N(0, I), a
n

i = 1
(xi - x)2 ∼ x2[n - 1]. (B-110)

We have already shown that the second term in (b-104) has a chi-squared distribution 
with one degree of freedom. it is instructive to set this up as a quadratic form as well:

 nx2 = x′ c 1
n

 ii′ d x = x′[jj′]x, where j = a 12n
b i. (B-111)

the matrix in brackets is the outer product of a nonzero vector, which always has rank 
one. You can verify that it is idempotent by multiplication. thus, x′x is the sum of two 
chi-squared variables, one with n - 1 degrees of freedom and the other with one. it is 
now necessary to show that the two terms are independent. to do so, we will use the 
next theorem.

THEOREM B.8 Distribution of an Idempotent Quadratic Form in a 
 Standard Normal Vector
If x ∼ N[0, I] and A is idempotent, then x′Ax has a chi-squared distribution with 
degrees of freedom equal to the number of unit roots of A, which is equal to the 
rank of A.

which has a chi-squared distribution. the sum is taken over the j = 1, c, J elements 
associated with the roots that are equal to one. a matrix whose characteristic roots are 
all zero or one is idempotent. therefore, we have proved the next theorem.
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THEOREM B.9 Independence of Idempotent Quadratic Forms

If x ∼ N[0, I] and x′ Ax and x′ Bx are two idempotent quadratic forms in x,
then x′ Ax and x′Bx are independent if AB = 0. (B-112)

as before, we show the result for the general case and then specialize it for the example. 
because both A and B are symmetric and idempotent, A = A′A and B = B′B. the 
quadratic forms are therefore

x′Ax = x′A′Ax = x1
=x1, where x1 = Ax, and x′Bx = x2

=  x2, where x2 = Bx.

 (B-113)

both vectors have zero mean vectors, so the covariance matrix of x1 and x2 is

E(x1x2
=) = AIB′ = AB = 0.

because Ax and Bx are linear functions of a normally distributed random vector, 
they are, in turn, normally distributed. their zero covariance matrix implies that they are 
statistically independent,8 which establishes the independence of the two quadratic 
forms. For the case of x′x, the two matrices are M0 and [I - M0]. You can show that 
M0[I - M0] = 0 just by multiplying it out.

B.11.5  THE F DISTRIBUTION

the normal family of distributions (chi-squared, F, and t) can all be derived as functions 
of idempotent quadratic forms in a standard normal vector. the F distribution is the 
ratio of two independent chi-squared variables, each divided by its respective degrees of 
freedom. let A and B be two idempotent matrices with ranks ra and rb, and let AB = 0. 
then

 
x′Ax/ra

x′Bx/rb
∼ F[ra, rb]. (B-114)

if Var[x] = s2I instead, then this is modified to

 
(x′Ax/s2)/ra

(x′Bx/s2)/rb
∼ F[ra, rb]. (B-115)

B.11.6  A FULL RANK QUADRATIC FORM

Finally, consider the general case,

x ∼ N[M, �].

8Note that both x1 = Ax and x2 = Bx have singular covariance matrices. Nonetheless, every element of x1 is 
independent of every element x2, so the vectors are independent.
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THEOREM B.10 Distribution of a Standardized Normal Vector

If x ∼ N[m, �], then �-1/2(x - M) ∼ N[0, I].

THEOREM B.11 Distribution of x′�-1x When x Is Normal

If x ∼ N[M, �], then (x - M)′�-1(x - M) ∼ X2[n].

We are interested in the distribution of

 q = (x - M)′�-1(x - M). (B-116)

First, the vector can be written as z = x - M, and � is the covariance matrix of z as well 
as of x. therefore, we seek the distribution of

 q = z′�-1z = z′(Var[z])-1z, (B-117)

where z is normally distributed with mean 0. this result is a quadratic form, but not 
necessarily in an idempotent matrix.9 because � is positive definite, it has a square root. 
Define the symmetric matrix �1/2 so that �1/2�1/2 = �. then,

�-1 = �-1/2�-1/2,

and

 z′�-1z = z′�-1/2′�-1/2z

 = (�-1/2z)′(�-1/2z)

 = w′w.

Now w = Az, so

E(w) = AE[z] = 0,

and

Var[w] = A�A′ = �-1/2��-1/2 = �0 = I.

this produces the following important result:

9it will be idempotent only in the special case of � = I.

the simplest special case is that in which x has only one variable, so that the 
transformation is just (x - m)/s. Combining this case with (b-32) concerning the sum 
of squares of standard normals, we have the following theorem.
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THEOREM B.12 Independence of a Linear and a Quadratic Form
A linear function Lx and a symmetric idempotent quadratic form x′Ax in a stand-
ard normal vector are statistically independent if LA = 0.

the proof follows the same logic as that for two quadratic forms. Write x′Ax as 
x′A′Ax = (Ax)′(Ax). the covariance matrix of the variables Lx and Ax is LA = 0, 
which establishes the independence of these two random vectors. the independence of 
the linear function and the quadratic form follows because functions of independent 
random vectors are also independent.

the t distribution is defined as the ratio of a standard normal variable to the square 
root of an independent chi-squared variable divided by its degrees of freedom:

t[J] =
N[0, 1]

5x2[J]/J61/2
.

a particular case is

t[n - 1] =
2n x

e 1
n - 1 a n

i = 1(xi - x)2 r1/2
=

2nx
s

,

where s is the standard deviation of the values of x. the distribution of the two variables 
in t[n - 1] was shown earlier; we need only show that they are independent. but2nx =

12n
 i′x = j′x,

and

s2 =
x′M0x
n - 1

.

it suffices to show that M0j = 0, which follows from

M0i = [I - i(i′i)-1i′]i = i - i(i′i)-1(i′i) = 0.

B.11.7  INDEPENDENCE OF A LINEAR AND A QUADRATIC FORM

the t distribution is used in many forms of hypothesis tests. in some situations, it arises as 
the ratio of a linear to a quadratic form in a normal vector. to establish the distribution 
of these statistics, we use the following result.
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A P P E N D I X  C

§
eStiMatiON aND iNFereNCe

C.1 INTRODUCTION

the probability distributions discussed in appendix b serve as models for the underlying 
data generating processes that produce our observed data. the goal of statistical 
inference in econometrics is to use the principles of mathematical statistics to combine 
these theoretical distributions and the observed data into an empirical model of the 
economy. this analysis takes place in one of two frameworks, classical or bayesian. the 
overwhelming majority of empirical study in econometrics has been done in the classical 
framework. Our focus, therefore, will be on classical methods of inference. bayesian 
methods are discussed in Chapter 16.1

C.2 SAMPLES AND RANDOM SAMPLING

the classical theory of statistical inference centers on rules for using the sampled data 
effectively. these rules, in turn, are based on the properties of samples and sampling 
distributions.

a sample of n observations on one or more variables, denoted x 1 , x 2 , c, x n 
is a random sample if the n observations are drawn independently from the same 
population, or probability distribution, f(x i, U). the sample may be univariate if x i is 
a single random variable or multivariate if each observation contains several variables. 
a random sample of observations, denoted [x 1 , x 2 , c, x n] or {x i}i = 1 , c, n, is said to 
be independent, identically distributed, which we denote i. i. d. the vector U contains 
one or more unknown parameters. Data are generally drawn in one of two settings. a 
cross section is a sample of a number of observational units all drawn at the same point 
in time. a time series is a set of observations drawn on the same observational unit at a 
number of (usually evenly spaced) points in time. Many recent studies have been based 
on time-series cross sections, which generally consist of the same cross-sectional units 
observed at several points in time. because the typical data set of this sort consists of a 
large number of cross-sectional units observed at a few points in time, the common term 
panel data set is usually more fitting for this sort of study.

1an excellent reference is leamer (1978). a summary of the results as they apply to econometrics is contained 
in Zellner (1971) and in Judge et al. (1985). See, as well, Poirier (1991, 1995). recent textbooks on bayesian 
econometrics include Koop (2003), lancaster (2004) and geweke (2005).
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C.3 DESCRIPTIVE STATISTICS

before attempting to estimate parameters of a population or fit models to data, we 
normally examine the data themselves. in raw form, the sample data are a disorganized 
mass of information, so we will need some organizing principles to distill the information 
into something meaningful. Consider, first, examining the data on a single variable. in 
most cases, and particularly if the number of observations in the sample is large, we shall 
use some summary statistics to describe the sample data. Of most interest are measures 
of location—that is, the center of the data—and scale, or the dispersion of the data. a 
few measures of central tendency are as follows:

 mean: x =
1
n a

n

i = 1
xi,

 median: M = middle ranked observation,

 sample midrange: midrange =
maximum + minimum

2
.  (C-1)

the dispersion of the sample observations is usually measured by the

 standard deviation: sx = C a n
i = 1(xi - x)2

n - 1
S 1/2

. (C-2)

Other measures, such as the average absolute deviation from the sample mean, 
are also used, although less frequently than the standard deviation. the shape of the 
distribution of values is often of interest as well. Samples of income or expenditure 
data, for example, tend to be highly skewed while financial data such as asset returns 
and exchange rate movements are relatively more symmetrically distributed but are also 
more widely dispersed than other variables that might be observed. two measures used 
to quantify these effects are the

skewness = C a n
i = 1(xi - x)3

(n -  1)sx
3 S , and kurtosis = C a n

i = 1(xi - x)4

(n - 1)sx
4 S .

(benchmark values for these two measures are zero for a symmetric distribution, and 
three for one which is “normally” dispersed.) the skewness coefficient has a bit less 
of the intuitive appeal of the mean and standard deviation, and the kurtosis measure 
has very little at all. the box and whisker plot is a graphical device which is often used 
to capture a large amount of information about the sample in a simple visual display. 
this plot shows in a figure the median, the range of values contained in the 25th and 
75th percentile, some limits that show the normal range of values expected, such as the 
median plus and minus two standard deviations, and in isolation values that could be 
viewed as outliers. a box and whisker plot is shown in Figure C.1 for the income variable 
in example C.1.

if the sample contains data on more than one variable, we will also be interested in 
measures of association among the variables. a scatter diagram is useful in a bivariate 
sample if the sample contains a reasonable number of observations. Figure C.1 shows an 
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FIGURE C.1  Box and Whisker Plot for Income and Scatter Diagram for 
Income and Education.

9
0

10

20

30

40

50

60

70

80

90

12 15
Education in Years

In
co

m
e 

in
 T

ho
us

an
ds

18 21 24

example for a small data set. if the sample is a multivariate one, then the degree of linear 
association among the variables can be measured by the pairwise measures

 covariance: sxy = a n
i = 1(xi - x)(yi - y)

n - 1
,

 correlation: rxy =
sxy

sxsy

. (C-3)

if the sample contains data on several variables, then it is sometimes convenient to 
arrange the covariances or correlations in a

 covariance matrix : S = [s ij], (C-4)

or

correlation matrix : R = [rij].

Some useful algebraic results for any two variables (x i, yi), i = 1 , c, n,  and 
constants a and b are

  sx
2 =

¢ a n
i = 1xi

2≤ - nx2

n - 1
, (C-5)

  sxy =
¢ a n

i = 1xiyi≤ - nx y

n - 1
, (C-6)
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-1 … rxy … 1 ,

 rax , by =
ab

� ab �
 rxy, a, b ≠ 0 , (C-7)

 s ax = � a �  s x ,  (C-8)

s ax , by = (ab)s xy.

Note that these algebraic results parallel the theoretical results for bivariate 
probability distributions. [We note in passing, while the formulas in (C-2) and (C-5) are 
algebraically the same, (C-2) will generally be more accurate in practice, especially when 
the values in the sample are very widely dispersed.]

Example C.1  Descriptive Statistics for a Random Sample
Appendix Table FC.1 contains a (hypothetical) sample of observations on income and 
education (The observations all appear in the calculations of the means below.) A scatter 
diagram appears in Figure C.1. It suggests a weak positive association between income and 
education in these data. The box and whisker plot for income at the left of the scatter plot 
shows the distribution of the income data as well.

 Means: I =
1

20
 C20.5 + 31.5 + 47.7 + 26.2 + 44.0 + 8.28 + 30.8 +

17.2 + 19.9 + 9.96 + 55.8 + 25.2 + 29.0 + 85.5 +
15.1 + 28.5 + 21.4 + 17.7 + 6.42 + 84.9

S = 31.278,

 E =
1

20
 J12 + 16 + 18 + 16 + 12 + 12 + 16 + 12 + 10 + 12 +

16 + 20 + 12 + 16 + 10 + 18 + 16 + 20 + 12 + 16
R = 14.600.

Standard deviations:

 sI = 2 1
19  [(20.5 - 31.278)2 + g + (84.9 - 31.278)2] = 22.376,

 sE = 2 1
19  [(12 - 14.6)2 + g + (16 - 14.6)2] = 3.119.

Covariance: sIE = 1
19  [20.5(12) + g + 84.9(16) - 20(31.28)(14.6)] = 23.597,

Correlation: rIE =
23.597

(22.376)(3.119)
= 0.3382.

The positive correlation is consistent with our observation in the scatter diagram.

the statistics just described will provide the analyst with a more concise description 
of the data than a raw tabulation. However, we have not, as yet, suggested that these 
measures correspond to some underlying characteristic of the process that generated 
the data. We do assume that there is an underlying mechanism, the data generating 
process that produces the data in hand. thus, these serve to do more than describe the 
data; they characterize that process, or population. because we have assumed that there 
is an underlying probability distribution, it might be useful to produce a statistic that 
gives a broader view of the DgP. the histogram is a simple graphical device that 
produces this result—see examples C.3 and C.4 for applications. For small samples or 
widely dispersed data, however, histograms tend to be rough and difficult to make 
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FIGURE C.2  Kernel Density Estimate for Income.
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informative. a burgeoning literature2 has demonstrated the usefulness of the kernel 
density estimator as a substitute for the histogram as a descriptive tool for the underlying 
distribution that produced a sample of data. the underlying theory of the kernel density 
estimator is fairly complicated, but the computations are surprisingly simple. the 
estimator is computed using

fn(x*) =
1

nh a
n

i = 1
KJx i - x*

h
R ,

where x 1 , c, x n are the n observations in the sample, fn(x*) denotes the estimated 
density function, x* is the value at which we wish to evaluate the density, and h and 
K [ # ] are the “bandwidth” and “kernel function” that we now consider. the density 
estimator is rather like a histogram, in which the bandwidth is the width of the intervals. 
the kernel function is a weight function which is generally chosen so that it takes large 
values when x* is close to x i and tapers off to zero as they diverge in either direction. 
the weighting function used in the following example is the logistic density discussed in 
Section b.4.7. the bandwidth is chosen to be a function of 1 /n so that the intervals can 
become narrower as the sample becomes larger (and richer). the one used for Figure 
C.2 is h = 0.9 Min (s, range/3)/n0.2. (We will revisit this method of estimation in Chapter 
12.) example C.2 illustrates the computation for the income data used in example C.1.

Example C.2  Kernel Density Estimator for the Income Data
Figure C.2 suggests the large skew in the income data that is also suggested by the box and 
whisker plot (and the scatter plot in Example C.1.)

2See for example, Pagan and Ullah (1999), li and racine (2007) and Henderson and Parmeter (2015).
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C.4 STATISTICS AS ESTIMATORS—SAMPLING DISTRIBUTIONS

the measures described in the preceding section summarize the data in a random 
sample. each measure has a counterpart in the population, that is, the distribution from 
which the data were drawn. Sample quantities such as the means and the correlation 
coefficient correspond to population expectations, whereas the kernel density estimator 
and the values in table C.1 parallel the population pdf and cdf. in the setting of a random 
sample, we expect these quantities to mimic the population, although not perfectly. 
the precise manner in which these quantities reflect the population values defines the 
sampling distribution of a sample statistic.

Range Relative Frequency Cumulative Frequency

6$ 1 0 ,0 0 0 0.15 0.15
10,000–25,000 0.30 0.45
25,000–50,000 0.40 0.85
75 0 ,0 0 0 0.15 1.00

TABLE C.1 Income Distribution

THEOREM C.1 Sampling Distribution of the Sample Mean
If x 1 , c, x n are a random sample from a population with mean m and variance 
s2 , then x  is a random variable with mean m and variance s2/ n.
Proof: x = (1 / n)Σix i. E[x ] = (1 / n)Σim = m.The observations are independ-
ent, so Var[x ] = (1 / n)2 Var[Σix i] = (1 / n2)Σis

2 = s2/ n.

DEFINITION C.1 Statistic
A statistic is any function computed from the data in a sample.

if another sample were drawn under identical conditions, different values would be 
obtained for the observations, as each one is a random variable. any statistic is a function 
of these random values, so it is also a random variable with a probability distribution 
called a sampling distribution. For example, the following shows an exact result for the 
sampling behavior of a widely used statistic.

example C.3 illustrates the behavior of the sample mean in samples of four 
observations drawn from a chi-squared population with one degree of freedom. the 
crucial concepts illustrated in this example are, first, the mean and variance results in 
theorem C.1 and, second, the phenomenon of sampling variability.

Notice that the fundamental result in theorem C.1 does not assume a distribution 
for x i. indeed, looking back at Section C.3, nothing we have done so far has required 
any assumption about a particular distribution.
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Example C.3  Sampling Distribution of a Sample Mean
Figure C.3 shows a histogram of the means of 1,000 random samples of four observations 
drawn from a chi-squared distribution with one degree of freedom, which has mean 1 and 
variance 2.

We are often interested in how a statistic behaves as the sample size increases. 
example C.4 illustrates one such case. Figure C.4 shows two sampling distributions, 
one based on samples of three and a second, of the same statistic, but based on samples 
of six. the effect of increasing sample size in this figure is unmistakable. it is easy to 
visualize the behavior of this statistic if we extrapolate the experiment in example C.4 
to samples of, say, 100.

Example C.4  Sampling Distribution of the Sample Minimum
If x1, c, xn are a random sample from an exponential distribution with f(x ) = ue-ux , then 
the sampling distribution of the sample minimum in a sample of n observations, denoted 
x (1), is

f(x (1)) = (nu)e-(nu)x (1).

Because E[x ] = 1/ u  and Var[x ] = 1/ u2,  by analogy E[x (1)] = 1/ (nu)  and 
Var[x (1)] = 1/ (nu)2. Thus, in increasingly larger samples, the minimum will be arbitrarily 
close to 0. [The Chebychev inequality in Theorem D.2 can be used to prove this intuitively 
appealing result.]

Figure C.4 shows the results of a simple sampling experiment you can do to demonstrate 
this effect. It requires software that will allow you to produce pseudorandom numbers 
uniformly distributed in the range zero to one and that will let you plot a histogram and 
control the axes. (We used NLOGIT. This can be done with Stata, Excel, or several 
other packages.) The experiment consists of drawing 1,000 sets of nine random values, 

FIGURE C.3  Sampling Distribution of Means of 1,000 Samples of Size 4 from 
Chi-Squared[1].
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Uij, i = 1, c1,000, j = 1, c, 9. To transform these uniform draws to exponential with 
parameter u—we used u = 1.5, use the inverse probability transform—see Section E.2.3. 
For an exponentially distributed variable, the transformation is z ij = - (1/ u) log(1 - Uij). 
We then created z (1) � 3 from the first three draws and z (1) � 6 from the other six. The two 
histograms show clearly the effect on the sampling distribution of increasing sample size 
from just 3 to 6.

Sampling distributions are used to make inferences about the population. to 
consider a perhaps obvious example, because the sampling distribution of the mean 
of a set of normally distributed observations has mean m,  the sample mean is a 
natural candidate for an estimate of m.  the observation that the sample “mimics” the 
population is a statement about the sampling distributions of the sample statistics. 
Consider, for example, the sample data collected in Figure C.3. the sample mean of 
four observations clearly has a sampling distribution, which appears to have a mean 
roughly equal to the population mean. Our theory of parameter estimation departs 
from this point.

FIGURE C.4  Histograms of the Sample Minimum of 3 and 6 Observations.
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C.5 POINT ESTIMATION OF PARAMETERS

Our objective is to use the sample data to infer the value of a parameter or set of 
parameters, which we denote u. a point estimate is a statistic computed from a sample 
that gives a single value for u. the standard error of the estimate is the standard deviation 
of the sampling distribution of the statistic; the square of this quantity is the sampling 
variance. an interval estimate is a range of values that will contain the true parameter with 
a preassigned probability. there will be a connection between the two types of estimates; 
generally, if un is the point estimate, then the interval estimate will be un { a measure of 
sampling error.

an estimator is a rule or strategy for using the data to estimate the parameter. it is 
defined before the data are drawn. Obviously, some estimators are better than others. to 
take a simple example, your intuition should convince you that the sample mean would 
be a better estimator of the population mean than the sample minimum; the minimum 
is almost certain to underestimate the mean. Nonetheless, the minimum is not entirely 
without virtue; it is easy to compute, which is occasionally a relevant criterion. the search 
for good estimators constitutes much of econometrics. estimators are compared on the 
basis of a variety of attributes. Finite sample properties of estimators are those attributes 
that can be compared regardless of the sample size. Some estimation problems involve 
characteristics that are not known in finite samples. in these instances, estimators are 
compared on the basis on their large sample, or asymptotic properties. We consider 
these in turn.

C.5.1  ESTIMATION IN A FINITE SAMPLE

the following are some finite sample estimation criteria for estimating a single 
parameter. the extensions to the multiparameter case are direct. We shall consider them 
in passing where necessary.

DEFINITION C.2 Unbiased Estimator
An estimator of a parameter u is unbiased if the mean of its sampling distribution 
is u. Formally,

E[un] = u

or

E[un - u] = bias[un � u] = 0

implies that un is unbiased. Note that this implies that the expected sampling 
error is zero. If U is a vector of parameters, then the estimator is unbiased if the 
expected value of every element of Un equals the corresponding element of U.

if samples of size n are drawn repeatedly and un is computed for each one, then 
the average value of these estimates will tend to equal u. For example, the average of 
the 1,000 sample means underlying Figure C.3 is 0.9804, which is reasonably close to 
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the population mean of one. the sample minimum is clearly a biased estimator of the 
mean; it will almost always underestimate the mean, so it will do so on average as well.

Unbiasedness is a desirable attribute, but it is rarely used by itself as an estimation 
criterion. One reason is that there are many unbiased estimators that are poor uses of 
the data. For example, in a sample of size n, the first observation drawn is an unbiased 
estimator of the mean that clearly wastes a great deal of information. a second criterion 
used to choose among unbiased estimators is efficiency.

DEFINITION C.4 Mean Squared Error
The mean squared error of an estimator is

 MSe[un � u] = E[(un - u)2]

 = Var[un] + (bias[un � u])2        if u is a scalar,

 MSe [Un �U] = Var[Un] + bias[Un �U]bias[Un �U]′  if U is a vector. (C-9)

DEFINITION C.3 Efficient Unbiased Estimator
An unbiased estimator un1  is more efficient than another unbiased estimator un2  if 
the sampling variance of un1  is less than that of un2 . That is,

Var[un1] 6 Var[un2].

In the multiparameter case, the comparison is based on the covariance matrices 
of the two estimators; Un1  is more efficient than Un2  if Var[Un2] - Var[Un1] is a posi-
tive definite matrix.

by this criterion, the sample mean is obviously to be preferred to the first observation 
as an estimator of the population mean. if s2  is the population variance, then

Var[x1] = s2 7 Var[x] =
s2

n
.

in discussing efficiency, we have restricted the discussion to unbiased estimators. 
Clearly, there are biased estimators that have smaller variances than the unbiased ones 
we have considered. any constant has a variance of zero. Of course, using a constant 
as an estimator is not likely to be an effective use of the sample data. Focusing on 
unbiasedness may still preclude a tolerably biased estimator with a much smaller 
variance, however. a criterion that recognizes this possible tradeoff is the mean squared 
error. Figure C.5 illustrates the effect. in this example, on average, the biased estimator 
will be closer to the true parameter than will the unbiased estimator.

Which of these criteria should be used in a given situation depends on the particulars 
of that setting and our objectives in the study. Unfortunately, the MSe criterion is rarely 
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operational; minimum mean squared error estimators, when they exist at all, usually 
depend on unknown parameters. thus, we are usually less demanding. a commonly used 
criterion is minimum variance unbiasedness.

Example C.5  Mean Squared Error of the Sample Variance
In sampling from a normal distribution, the most frequently used estimator for s2 is

s2 = a n
i = 1(xi - x )2

n - 1
.

It is straightforward to show that s2 is unbiased, so

Var[s2] =
2s4

n - 1
= MSE[s2 �s2].

A proof is based on the distribution of the idempotent quadratic form (x - i m)′M0(x - im), 
which we discussed in Section B.11.4. A less frequently used estimator is

sn 2 =
1
n a

n

i = 1
(xi - x )2 = [(n - 1)/ n]s2.

This estimator is slightly biased downward:

E[sn 2] =
(n - 1)E(s2)

n
=

(n - 1)s2

n
,

so its bias is

E[sn 2 - s2] = Bias[sn 2 �s2] =
-1
n

 s2.

But it has a smaller variance than s2:

Var[sn 2] = c n - 1
n

d
2 J 2s4

n - 1
R 6 Var[s2].

FIGURE C.5  Sampling Distributions.
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To compare the two estimators, we can use the difference in their mean squared errors:

MSE[sn 2 �s2] - MSE[s2 �s2] = s4 c 2n - 1

n2 -
2

n - 1
d 6 0.

The biased estimator is a bit more precise. The difference will be negligible in a large sample, 
but, for example, it is about 1.2 percent in a sample of 16.

C.5.2  EFFICIENT UNBIASED ESTIMATION

in a random sample of n observations, the density of each observation is f(x i, u). because 
the n observations are independent, their joint density is

 f(x 1 , x 2 , c, x n, u) = f(x 1 , u)f(x 2 , u)gf(x n, u)  

  = q
n

i = 1
f(x i, u) = L(u � x 1 , x 2 , c, x n). (C-10)

this function, denoted L(u � X), is called the likelihood function for u given the data X. 
it is frequently abbreviated to L(u). Where no ambiguity can arise, we shall abbreviate 
it further to L.

Example C.6  Likelihood Functions for Exponential and Normal 
Distributions

If x1, c, xn are a sample of n observations from an exponential distribution with parameter 
u, then

L(u) = q
n

i = 1
ue-ux i = une-uΣn

i = 1x i.

If x1, c, xn are a sample of n observations from a normal distribution with mean m and 
standard deviation s, then

 L(m, s) = q
n

i = 1
(2ps2)-1/ 2e-[1/ (2s2)](x i - m)2

  = (2ps2)-n/ 2e-[1/ (2s2)]Σi(x i - m)2
. (C-11)

the likelihood function is the cornerstone for much of our theory of parameter 
estimation. an important result for efficient estimation is the following.

THEOREM C.2 Cramér–Rao Lower Bound
Assuming that the density of x satisfies certain regularity conditions, the variance of 
an unbiased estimator of a parameter u will always be at least as large as

 [I(u)]-1 = ¢ -E J 02 ln L(u)

0u2 R ≤-1

= ¢E J a 0 ln L(u)

0u
b

2 R ≤-1

. (C-12)

The quantity I(u) is the information number for the sample. We will prove the 
result that the negative of the expected second derivative equals the expected 
square of the first derivative in Chapter 14. Proof of the main result of the 
 theorem is quite involved. See, for example, Stuart and Ord (1989).
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the regularity conditions are technical. (See Section 14.4.1.) loosely, they 
are conditions imposed on the density of the random variable that appears in the 
likelihood function; these conditions will ensure that the lindeberg–levy central limit 
theorem will apply to moments of the sample of observations on the random vector 
y = 0 ln f(x i � u)/ 0u, i = 1 , c, n. among the conditions are finite moments of x up 
to order 3. an additional condition usually included in the set is that the range of the 
random variable be independent of the parameters.

in some cases, the second derivative of the log likelihood is a constant, so the 
Cramér–rao bound is simple to obtain. For instance, in sampling from an exponential 
distribution, from example C.6,

 ln L = n ln u - ua
n

i = 1
x i,

 
0 ln L

0u
=

n
u

- a
n

i = 1
x i,

so 02lnL/0u2 = -n/u2 and the variance bound is [I(u)]-1 = u2/n. in many situations, the 
second derivative is a random variable with a distribution of its own. the following 
examples show two such cases.

Example C.7  Variance Bound for the Poisson Distribution
For the Poisson distribution,

 f(x ) =
e-uux

x !
,

 ln L = -nu + ¢ an
i = 1

xi≤ ln u - a
n

i = 1
 ln(xi !),

 
0 ln L

0u
= -n + a n

i = 1xi

u
,

 
02 ln L

0u2 =
- a n

i = 1xi

u2 .

The sum of n identical Poisson variables has a Poisson distribution with parameter equal 
to n times the parameter of the individual variables. Therefore, the actual distribution of the 
first derivative will be that of a linear function of a Poisson distributed variable. Because 
E[ a n

i = 1xi] = nE[xi] = nu, the variance bound for the Poisson distribution is [I(u)]-1 = u/ n. 
(Note also that the same result implies that E[0 ln L/ 0u] = 0, which is a result we will use in 
Chapter 14. The same result holds for the exponential distribution.)

Consider, finally, a multivariate case. if U is a vector of parameters, then I(U) is the 
information matrix. the Cramér–rao theorem states that the difference between the 
covariance matrix of any unbiased estimator and the inverse of the information matrix,

 [I(U)]-1 = ¢ -E J 02 ln L(U)

0U0U′
R ≤-1

= bE J a 0 ln L(U)

0U
b a 0 ln L(U)

0U′
b R r -1

, (C-13)

will be a nonnegative definite matrix.
in some settings, numerous estimators are available for the parameters of a 

distribution. the usefulness of the Cramér–rao bound is that if one of these is known 
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DEFINITION C.5 Minimum Variance Linear Unbiased Estimator (MVLUE)
An estimator is the minimum variance linear unbiased estimator or best linear 
unbiased estimator (BLUE) if it is a linear function of the data and has minimum 
variance among linear unbiased estimators.

to attain the variance bound, then there is no need to consider any other to seek a more 
efficient estimator. regarding the use of the variance bound, we emphasize that if an 
unbiased estimator attains it, then that estimator is efficient. if a given estimator does 
not attain the variance bound, however, then we do not know, except in a few special 
cases, whether this estimator is efficient or not. it may be that no unbiased estimator can 
attain the Cramér–rao bound, which can leave the question of whether a given unbiased 
estimator is efficient or not unanswered.

We note, finally, that in some cases we further restrict the set of estimators to linear 
functions of the data.

in a few instances, such as the normal mean, there will be an efficient linear unbiased 
estimator; x  is efficient among all unbiased estimators, both linear and nonlinear. in 
other cases, such as the normal variance, there is no linear unbiased estimator. this 
criterion is useful because we can sometimes find an MVlUe without having to specify 
the distribution at all. thus, by limiting ourselves to a somewhat restricted class of 
estimators, we free ourselves from having to assume a particular distribution.

C.6 INTERVAL ESTIMATION

regardless of the properties of an estimator, the estimate obtained will vary from sample 
to sample, and there is some probability that it will be quite erroneous. a point estimate 
will not provide any information on the likely range of error. the logic behind an interval 
estimate is that we use the sample data to construct an interval, [lower (X), upper (X)], 
such that we can expect this interval to contain the true parameter in some specified 
proportion of samples, or equivalently, with some desired level of confidence. Clearly, 
the wider the interval, the more confident we can be that it will, in any given sample, 
contain the parameter being estimated.

the theory of interval estimation is based on a pivotal quantity, which is a function 
of both the parameter and a point estimate that has a known distribution. Consider the 
following examples.

Example C.8  Confidence Intervals for the Normal Mean
In sampling from a normal distribution with mean m and standard deviation s,

z =
2n(x - m)

s
∼ t[n - 1],

and

c =
(n - 1)s2

s2 ∼ x2[n - 1].
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Given the pivotal quantity, we can make probability statements about events involving the 
parameter and the estimate. Let p(g, u) be the constructed random variable, for example, 
z or c. Given a prespecified confidence level, 1 - a, we can state that

 Prob(lower … p(g, u) … upper) = 1 - a, (C-14)

where lower and upper are obtained from the appropriate table. This statement is then 
manipulated to make equivalent statements about the endpoints of the intervals. For example, 
the following statements are equivalent:

 Prob( -z …
2n(x - m)

s
… z ) = 1 - a,

 Prob¢x -
zs2n

… m … x +
zs2n

≤ = 1 - a.

The second of these is a statement about the interval, not the parameter; that is, it is the 
interval that is random, not the parameter. We attach a probability, or 100(1 - a) percent 
confidence level, to the interval itself; in repeated sampling, an interval constructed in this 
fashion will contain the true parameter 100(1 - a) percent of the time.

in general, the interval constructed by this method will be of the form

 lower(X) = un - e 1 ,

 upper(X) = un + e 2 ,

where X is the sample data, e 1  and e 2  are sampling errors, and un is a point estimate of 
u. it is clear from the preceding example that if the sampling distribution of the pivotal 
quantity is either t or standard normal, which will be true in the vast majority of cases 
we encounter in practice, then the confidence interval will be

 un { C1 - a/ 2 [se(un)], (C-15)

where se (.) is the (known or estimated) standard error of the parameter estimator 
and C1 - a/ 2  is the value from the t or standard normal distribution that is exceeded 
with probability 1 - a/ 2 . the usual values for a are 0.10, 0.05, or 0.01. the theory 
does not prescribe exactly how to choose the endpoints for the confidence interval. an 
obvious criterion is to minimize the width of the interval. if the sampling distribution 
is symmetric, then the symmetric interval is the best one. if the sampling distribution is 
not symmetric, however, then this procedure will not be optimal.

Example C.9   Estimated Confidence Intervals for a Normal Mean  
and Variance

In a sample of 25, x = 1.63 and s = 0.51. Construct a 95 percent confidence interval for m.
Assuming that the sample of 25 is from a normal distribution,

Prob¢ -2.064 …
5(x - m)

s
… 2.064 ≤ = 0.95,

where 2.064 is the critical value from a t distribution with 24 degrees of freedom. Thus, the 
confidence interval is 1.63 { [2.064(0.51)/ 5] or [1.4195, 1.8405].

Remark: Had the parent distribution not been specified, it would have been natural to use the 
standard normal distribution instead, perhaps relying on the central limit theorem. But a sample 
size of 25 is small enough that the more conservative t distribution might still be preferable.
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The chi-squared distribution is used to construct a confidence interval for the variance 
of a normal distribution. Using the data from Example C.9, we find that the usual procedure 
would use

Prob¢12.4 …
24s2

s2 … 39.4 ≤ = 0.95,

where 12.4 and 39.4 are the 0.025 and 0.975 cutoff points from the chi-squared (24) 
distribution. This procedure leads to the 95 percent confidence interval [0.1581, 0.5032]. 
By making use of the asymmetry of the distribution, a narrower interval can be constructed. 
Allocating 4 percent to the left-hand tail and 1 percent to the right instead of 2.5 percent to 
each, the two cutoff points are 13.4 and 42.9, and the resulting 95 percent confidence interval 
is [0.1455, 0.4659].

Finally, the confidence interval can be manipulated to obtain a confidence interval for 
a function of a parameter. For example, based on the preceding, a 95 percent confidence 
interval for s would be [20.1581, 20.5032] = [0.3976, 0.7094].

C.7 HYPOTHESIS TESTING

the second major group of statistical inference procedures is hypothesis tests. the 
classical testing procedures are based on constructing a statistic from a random sample 
that will enable the analyst to decide, with reasonable confidence, whether or not the 
data in the sample would have been generated by a hypothesized population. the 
formal procedure involves a statement of the hypothesis, usually in terms of a “null” 
or maintained hypothesis and an “alternative,” conventionally denoted H0  and H1 , 
respectively. the procedure itself is a rule, stated in terms of the data, that dictates 
whether the null hypothesis should be rejected or not. For example, the hypothesis 
might state a parameter is equal to a specified value. the decision rule might state that 
the hypothesis should be rejected if a sample estimate of that parameter is too far away 
from that value (where “far” remains to be defined). the classical, or Neyman–Pearson, 
methodology involves partitioning the sample space into two regions. if the observed 
data (i.e., the test statistic) fall in the rejection region (sometimes called the critical 
region), then the null hypothesis is rejected; if they fall in the acceptance region, then 
it is not.

C.7.1  CLASSICAL TESTING PROCEDURES

because the sample is random, the test statistic, however defined, is also random. the 
same test procedure can lead to different conclusions in different samples. as such, there 
are two ways such a procedure can be in error:

1. Type I error. the procedure may lead to rejection of the null hypothesis when it is 
true.

2. Type II error. the procedure may fail to reject the null hypothesis when it is false.

to continue the previous example, there is some probability that the estimate of the 
parameter will be quite far from the hypothesized value, even if the hypothesis is true. 
this outcome might cause a type i error.
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the size of the test is under the control of the analyst. it can be changed just by 
changing the decision rule. indeed, the type i error could be eliminated altogether 
just by making the rejection region very small, but this would come at a cost. by 
eliminating the probability of a type i error—that is, by making it unlikely that the 
hypothesis is rejected—we must increase the probability of a type ii error. ideally, we 
would like both probabilities to be as small as possible. it is clear, however, that there 
is a tradeoff between the two. the best we can hope for is that for a given probability 
of type i error, the procedure we choose will have as small a probability of type ii 
error as possible.

DEFINITION C.6 Size of a Test
The probability of a type I error is the size of the test. This is conventionally denoted 
a and is also called the significance level.

DEFINITION C.7 Power of a Test
The power of a test is the probability that it will correctly lead to rejection of a false 
null hypothesis:

 power = 1 - b = 1 - Prob(type ii error). (C-16)

DEFINITION C.8 Most Powerful Test
A test is most powerful if it has greater power than any other test of the same size.

For a given significance level a, we would like b to be as small as possible. because b 
is defined in terms of the alternative hypothesis, it depends on the value of the parameter.

Example C.10  testing a Hypothesis About a Mean
For testing H0: m = m0 in a normal distribution with known variance s2, the decision rule is 
to reject the hypothesis if the absolute value of the z statistic, 2n(x - m0)/s, exceeds the 
predetermined critical value. For a test at the 5 percent significance level, we set the critical 
value at 1.96. The power of the test, therefore, is the probability that the absolute value of 
the test statistic will exceed 1.96 given that the true value of m is, in fact, not m0. This value 
depends on the alternative value of m, as shown in Figure C.6. Notice that for this test the 
power is equal to the size at the point where m equals m0. As might be expected, the test 
becomes more powerful the farther the true mean is from the hypothesized value.

testing procedures, like estimators, can be compared using a number of criteria.
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this requirement is very strong. because the power depends on the alternative 
hypothesis, we might require that the test be uniformly most powerful (UMP), that is, 
have greater power than any other test of the same size for all admissible values of the 
parameter. there are few situations in which a UMP test is available. We usually must 
be less stringent in our requirements. Nonetheless, the criteria for comparing hypothesis 
testing procedures are generally based on their respective power functions. a common 
and very modest requirement is that the test be unbiased.

DEFINITION C.9 Unbiased Test
A test is unbiased if its power (1 - b) is greater than or equal to its size a for all 
values of the parameter.

DEFINITION C.10 Consistent Test
A test is consistent if its power goes to one as the sample size grows to infinity.

FIGURE C.6  Power Function for a Test.
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if a test is biased, then, for some values of the parameter, we are more likely to retain 
the null hypothesis when it is false than when it is true.

the use of the term unbiased here is unrelated to the concept of an unbiased 
estimator. Fortunately, there is little chance of confusion. tests and estimators are clearly 
connected, however. the following criterion derives, in general, from the corresponding 
attribute of a parameter estimate.
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Example C.11  Consistent test About a Mean
A confidence interval for the mean of a normal distribution is x { t1 - a/ 2(s/ 2n), where x  and 
s are the usual consistent estimators for m and s (see Section D.2.1), n is the sample size, and 
t1 - a/ 2 is the correct critical value from the t distribution with n - 1 degrees of freedom. For 
testing H0: m = m0 versus H1: m ≠ m0, let the procedure be to reject H0 if the confidence interval 
does not contain m0. Because x  is consistent for m, one can discern if H0 is false as n S ∞ , with 
probability 1, because x  will be arbitrarily close to the true m. Therefore, this test is consistent.

as a general rule, a test will be consistent if it is based on a consistent estimator of 
the parameter.

C.7.2  TESTS BASED ON CONFIDENCE INTERVALS

there is an obvious link between interval estimation and the sorts of hypothesis tests 
we have been discussing here. the confidence interval gives a range of plausible values 
for the parameter. therefore, it stands to reason that if a hypothesized value of the 
parameter does not fall in this range of plausible values, then the data are not consistent 
with the hypothesis, and it should be rejected. Consider, then, testing

 H0 : u = u0 ,  H1 : u ≠ u0 .

We form a confidence interval based on un as described earlier:

un - C1 - a/ 2 [se(un)] 6 u 6 un + C1 - a/ 2 [se(un)].

H0  is rejected if u0  exceeds the upper limit or is less than the lower limit. equivalently, 
H0  is rejected if 2 un - u0

se(un)
 2 7 C1 - a/ 2 .

in words, the hypothesis is rejected if the estimate is too far from u0 , where the distance 
is measured in standard error units. the critical value is taken from the t or standard 
normal distribution, whichever is appropriate.

Example C.12   testing a Hypothesis About a Mean with a Confidence 
Interval

For the results in Example C.8, test H0: m = 1.98 versus H1: m ≠ 1.98, assuming sampling 
from a normal distribution:

t = ` x - 1.98

s/ 2n
` = ` 1.63 - 1.98

0.102
` = 3.43.

The 95 percent critical value for t(24) is 2.064. Therefore, reject H0. If the critical value for 
the standard normal table of 1.96 is used instead, then the same result is obtained.

if the test is one-sided, as in

 H0 : u Ú u0 , 

 H1 : u 6 u0 ,

then the critical region must be adjusted. thus, for this test, H0  will be rejected if a point 
estimate of u falls sufficiently below u0 . (tests can usually be set up by departing from 
the decision criterion, “What sample results are inconsistent with the hypothesis?”)
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Example C.13  One-Sided test About a Mean
A sample of 25 from a normal distribution yields x = 1.63 and s = 0.51. Test

 H0: m … 1.5, 
 H1: m 7 1.5.

Clearly, no observed x  less than or equal to 1.5 will lead to rejection of H0. Using the borderline 
value of 1.5 for m, we obtain

Proba2n(x - 1.5)
s

7
5(1.63 - 1.5)

0.51
b = Prob(t24 7 1.27).

This is approximately 0.11. This value is not unlikely by the usual standards. Hence, at a 
significance level of 0.11, we would not reject the hypothesis.

C.7.3  SPECIFICATION TESTS

the hypothesis testing procedures just described are known as classical testing procedures. 
in each case, the null hypothesis tested came in the form of a restriction on the alternative. 
You can verify that in each application we examined, the parameter space assumed 
under the null hypothesis is a subspace of that described by the alternative. For that 
reason, the models implied are said to be nested. the null hypothesis is contained within 
the alternative. this approach suffices for most of the testing situations encountered in 
practice, but there are common situations in which two competing models cannot be 
viewed in these terms. For example, consider a case in which there are two completely 
different, competing theories to explain the same observed data. Many models for 
censoring and truncation discussed in Chapter 19 rest upon a fragile assumption of 
normality, for example. testing of this nature requires a different approach from the 
classical procedures discussed here. these are discussed at various points throughout 
the book, for example, in Chapter 19, where we study the difference between fixed and 
random effects models.

A P P E N D I X  D

§
large-SaMPle DiStribUtiON tHeOrY

D.1 INTRODUCTION

Most of this book is about parameter estimation. in studying that subject, we will usually be 
interested in determining how best to use the observed data when choosing among competing 
estimators. that, in turn, requires us to examine the sampling behavior of estimators. in a 
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few cases, such as those presented in appendix C and the least squares estimator considered 
in Chapter 4, we can make broad statements about sampling distributions that will apply 
regardless of the size of the sample. but, in most situations, it will only be possible to make 
approximate statements about estimators, such as whether they improve as the sample size 
increases and what can be said about their sampling distributions in large samples as an 
approximation to the finite samples we actually observe. this appendix will collect most 
of the formal, fundamental theorems and results needed for this analysis. a few additional 
results will be developed in the discussion of time-series analysis later in the book.

D.2 LARGE-SAMPLE DISTRIBUTION THEORY1

in most cases, whether an estimator is exactly unbiased or what its exact sampling 
variance is in samples of a given size will be unknown. but we may be able to obtain 
approximate results about the behavior of the distribution of an estimator as the sample 
becomes large. For example, it is well known that the distribution of the mean of a sample 
tends to approximate normality as the sample size grows, regardless of the distribution of 
the individual observations. Knowledge about the limiting behavior of the distribution 
of an estimator can be used to infer an approximate distribution for the estimator in a 
finite sample. to describe how this is done, it is necessary, first, to present some results 
on convergence of random variables.

D.2.1  CONVERGENCE IN PROBABILITY

limiting arguments in this discussion will be with respect to the sample size n. let xn be 
a sequence random variable indexed by the sample size.

DEFINITION D.1 Convergence in Probability
The random variable xn converges in probability to a constant c if 
limnS ∞Prob( � xn - c � 7 e) = 0 for any positive e.

Convergence in probability implies that the values that the variable may take that 
are not close to c become increasingly unlikely as n increases. to consider one example, 
suppose that the random variable xn takes two values, zero and n, with probabilities 
1 - (1/n) and (1/n), respectively. as n increases, the second point will become ever 
more remote from any constant but, at the same time, will become increasingly less 
probable. in this example, xn converges in probability to zero. the crux of this form of 
convergence is that all the mass of the probability distribution becomes concentrated at 
points close to c. if xn converges in probability to c, then we write

 plim xn = c. (D-1)

1a comprehensive summary of many results in large-sample theory appears in White (2001). the results discussed 
here will apply to samples of independent observations. time-series cases in which observations are correlated are 
analyzed in Chapters 20 and 21.
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THEOREM D.1 Convergence in Quadratic Mean
If xn has mean mn and variance sn

2 such that the ordinary limits of mn and sn
2 are c 

and 0, respectively, then xn converges in mean square to c , and

plim xn = c.

THEOREM D.2 Chebychev’s Inequality
If xn is a random variable and c and e are constants, then Prob( � xn - c � 7 e) …
E[(xn - c)2]/e2.

THEOREM D.3 Markov’s Inequality
If yn is a nonnegative random variable and d is a positive constant, then 
Prob[yn Ú d] … E[yn]/d.
Proof: E[yn] = Prob[yn 6 d]E[yn � yn 6 d] + Prob[yn Ú d]E[yn � yn Ú d]. 
Because yn is non-negative, both terms must be nonnegative, so 
E[yn] Ú Prob[yn Ú d]E[yn � yn Ú d]. Because E[yn � yn Ú d] must be greater than 
or equal to d, E[yn] Ú Prob[yn Ú d]d, which is the result.

We will make frequent use of a special case of convergence in probability, convergence 
in mean square or convergence in quadratic mean.

a proof of theorem D.1 can be based on another useful theorem.

to establish the Chebychev inequality, we use another result [see goldberger (1991, 
p. 31)].

Now, to prove theorem D.1, let yn be (xn - c)2 and d be e2 in theorem D.3. then, 
(xn - c)2 7 d implies that � xn - c � 7 e. Finally, we will use a special case of the 
Chebychev inequality, where c = mn, so that we have

 Prob( � xn - mn � 7 e) … sn
2/e2. (D-2)

taking the limits of mn and sn
2 in (D-2), we see that if

 lim
nS ∞

E[xn] = c, and lim
nS ∞

Var[xn] = 0, (D-3)

then

plim xn = c.

We have shown that convergence in mean square implies convergence in probability. 
Mean-square convergence implies that the distribution of xn collapses to a spike at plim 
xn, as shown in Figure D.1.

Z03_GREE1366_08_SE_APP.indd   3 3/14/17   9:25 PM



 APPENDIX D  ✦  Large-Sample Distribution theory D-4
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FIGURE D.1  Quadratic Convergence to a Constant, u.

Example D.1   Mean Square Convergence of the Sample Minimum in 
Exponential Sampling

As noted in Example C.4, in sampling of n observations from an exponential distribution, for 
the sample minimum x(1),

lim
nS ∞

E[x(1)] = lim
nS ∞

 
1
nu

= 0

and

lim
nS ∞

Var[x(1)] = lim
nS ∞

 
1

(nu)2
= 0.

Therefore,

plim x(1) = 0.

Note, in particular, that the variance is divided by n2. This estimator converges very rapidly 
to 0.

Convergence in probability does not imply convergence in mean square. 
Consider  the simple example given earlier in which xn equals either zero or n 
with probabilities 1 - (1/n) and (1/n). the exact expected value of xn is 1 for all n, 
which is not the probability limit. indeed, if we let Prob(xn = n2) = (1/n) instead, the 
mean of the distribution explodes, but the probability limit is still zero. again, the 
point xn = n2 becomes ever more extreme but, at the same time, becomes ever less 
likely.

the conditions for convergence in mean square are usually easier to verify than 
those for the more general form. Fortunately, we shall rarely encounter circumstances 
in which it will be necessary to show convergence in probability in which we cannot 
rely upon convergence in mean square. Our most frequent use of this concept will be in 
formulating consistent estimators.
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THEOREM D.4 Consistency of the Sample Mean
The mean of a random sample from any population with finite mean m and finite 
variance s2 is a consistent estimator of m.
Proof: E[xn] = m and Var[xn] = s2/n. Therefore, xn converges in mean square 
to m, or plim xn = m.

COROLLARY TO THEOREM D.4 Consistency of a Mean of Functions
In random sampling, for any function g(x), if E[g(x)] and Var[g(x)] are finite 
 constants, then

 plim 
1
n

 a
n

i = 1
g(xi) = E[g(x)]. (D-5)

Proof: Define yi = g(xi) and use Theorem D.4.

DEFINITION D.2 Consistent Estimator
An estimator unn of a parameter u is a consistent estimator of u if and only if

 plim unn = u. (D-4)

theorem D.4 is broader than it might appear at first.

Example D.2  Estimating a Function of the Mean
In sampling from a normal distribution with mean m and variance 1, E[ex] = em+1/2 and 
Var[ex] = e2m+2 - e2m+1. (See Section B.4.4 on the lognormal distribution.) Hence,

plim 
1
n

 a
n

i = 1
exi = em + 1/2.

D.2.2  OTHER FORMS OF CONVERGENCE AND LAWS OF LARGE NUMBERS

theorem D.4 and the corollary just given are particularly narrow forms of a set 
of results known as laws of large numbers that are fundamental to the theory of 
parameter estimation. laws of large numbers come in two forms depending on the 
type of convergence considered. the simpler of these are “weak laws of large numbers” 
which rely on convergence in probability as we defined it above. “Strong laws” rely on 
a broader type of convergence called almost sure convergence. Overall, the law of large 
numbers is a statement about the behavior of an average of a large number of random 
variables.
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THEOREM D.5 Khinchine’s Weak Law of Large Numbers
If xi, i = 1, c, n is a random (i.i.d.) sample from a distribution with finite mean 
E[xi] = m, then

plim xn = m.

Proofs of this and the theorem below are fairly intricate. Rao (1973) provides one.

THEOREM D.6 Chebychev’s Weak Law of Large Numbers
If xi, i = 1, c, n is a sample of observations such that E[xi] = mi 6 ∞  
and Var[xi] = si

2 6 ∞  such that sn
2/n = (1/n2)Σisi

2 S 0 as n S ∞ , then 
plim(xn - mn) = 0.

DEFINITION D.3 Almost Sure Convergence
The random variable xn converges almost surely to the constant c if and only if

Proba lim
nS ∞

 xn = cb = 1.

Notice that this is already broader than theorem D.4, as it does not require that the 
variance of the distribution be finite. On the other hand, it is not broad enough, because 
most of the situations we encounter where we will need a result such as this will not 
involve i.i.d. random sampling. a broader result is

there is a subtle distinction between these two theorems that you should notice. the 
Chebychev theorem does not state that xn converges to mn, or even that it converges to 
a constant at all. that would require a precise statement about the behavior of mn. the 
theorem states that as n increases without bound, these two quantities will be arbitrarily 
close to each other—that is, the difference between them converges to a constant, zero. 
this is an important notion that enters the derivation when we consider statistics that 
converge to random variables, instead of to constants. What we do have with these two 
theorems are extremely broad conditions under which a sample mean will converge in 
probability to its population counterpart. the more important difference between the 
Khinchine and Chebychev theorems is that the second allows for heterogeneity in the 
distributions of the random variables that enter the mean.

in analyzing time-series data, the sequence of outcomes is itself viewed as a random 
event. Consider, then, the sample mean, xn. the preceding results concern the behavior 
of this statistic as n S ∞  for a particular realization of the sequence x1, c, xn. but, if 
the sequence, itself, is viewed as a random event, then the limit to which xn converges 
may be also. the stronger notion of almost sure convergence relates to this possibility.
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this is denoted xn ¡a.s.
c. it states that the probability of observing a sequence that 

does not converge to c ultimately vanishes. intuitively, it states that once the sequence 
xn becomes close to c, it stays close to c.

almost sure convergence is used in a stronger form of the law of large numbers:

COROLLARY TO THEOREM D.8 (Kolmogorov)
If xi, i = 1, c, n is a sequence of independent and identically distributed random 
variables such that E[xi] = m 6 ∞  and E[ � xi � ] 6 ∞ , then xn - m ¡a.s.

0.

the variance condition is satisfied if every variance in the sequence is finite, but this 
is not strictly required; it only requires that the variances in the sequence increase at a 
slow enough rate that the sequence of variances as defined is bounded. the theorem 
allows for heterogeneity in the means and variances. if we return to the conditions of 
the Khinchine theorem, i.i.d. sampling, we have a corollary:

Note that the corollary requires identically distributed observations while the theorem 
only requires independence. Finally, another form of convergence encountered in the 
analysis of time-series data is convergence in rth mean:

THEOREM D.8 Markov’s Strong Law of Large Numbers
If {zi} is a sequence of independent random variables with E[zi] = mi 6 ∞  and if 
for some 0 6 d 6 1, a ∞

i = 1 E[ � zi - mi � 1 + d]/i1+d 6 ∞ , then zn - mn converges 
almost surely to 0, which we denote zn - mn ¡a.s.

0.2

2the use of the expected absolute deviation differs a bit from the expected squared deviation that we have 
used heretofore to characterize the spread of a distribution. Consider two examples. if z ∼ N[0, s2], then 
E[ � z � ] = Prob[z 6 0]E[-z � z 6 0] + Prob[z Ú 0]E[z � z Ú 0] = 0.7979s. (See theorem 18.2.) So, finite 
expected absolute value is the same as finite second moment for the normal distribution. but if z takes values 
[0, n] with probabilities [1 - 1/n, 1/n], then the variance of z is (n - 1), but E[ � z - mz � ] is 2 - 2/n. For 
this case, finite expected absolute value occurs without finite expected second moment. these are different 
characterizations of the spread of the distribution.

THEOREM D.7 Kolmogorov’s Strong Law of Large Numbers
If xi, i = 1, c, n is a sequence of independently distributed random variables 

such that E[xi] = mi 6 ∞  and Var[xi] = si
2 6 ∞  such that a

∞

i = 1
si

2/i2 6 ∞  as 

n S ∞  then xn - mn ¡a.s.
0.
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DEFINITION D.4 Convergence in rth Mean
If xn is a sequence of random variables such that E[ � xn � r] 6 ∞  and 
limnS ∞ E[ � xn - c � r] = 0, then xn converges in rth mean to c. This is denoted 
xn ¡r.m.

c.

THEOREM D.9 Convergence in Lower Powers
If xn converges in rth mean to c, then xn converges in sth mean to c for 
any s 6 r. The proof uses Jensen’s Inequality, Theorem D.13. Write 
E[ � xn - c � s] = E[( � xn - c � r)s/r] … E[( � xn - c � r)]}s/r and the inner term con-
verges to zero so the full function must also.

THEOREM D.10 Generalized Chebychev’s Inequality
If xn is a random variable and c is a constant such that with E[ � xn - c � r] 6 ∞  and 
e is a positive constant, then Prob( � xn - c � 7 e) … E[ � xn - c � r]/er.

THEOREM D.11 Convergence in rth mean and Convergence in Probability
If xn ¡r.m.

c, for some r 7 0, then xn ¡p
c. The proof relies on Theorem 

D.10. By assumption, limnS ∞E[ � xn - c � r] = 0 so for some n sufficiently large, 
E[ � xn - c � r] 6 ∞ . By Theorem D.10, then, Prob( � xn - c � 7 e) … E[ � xn - c � r]/er 
for any e 7 0. The denominator of the fraction is a fixed constant and the numera-
tor converges to zero by our initial assumption, so limnS ∞Prob( � xn - c � 7 e) = 0, 
which completes the proof.

Surely the most common application is the one we met earlier, convergence in mean 
square, which is convergence in the second mean. Some useful results follow from this 
definition:

We have considered two cases of this result already, when r = 1 which is the Markov 
inequality, theorem D.3, and when r = 2, which is the Chebychev inequality we looked 
at first in theorem D.2.

One implication of theorem D.11 is that although convergence in mean square is a 
convenient way to prove convergence in probability, it is actually stronger than necessary, 
as we get the same result for any positive r.

Finally, we note that we have now shown that both almost sure convergence and 
convergence in rth mean are stronger than convergence in probability; each implies the 
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latter. but they, themselves, are different notions of convergence, and neither implies 
the other.

THEOREM D.13 Inequalities for Expectations
Jensen’s Inequality. If g(xn) is a concave function of xn, then 
g(E[xn]) Ú E[g(xn)]. Cauchy–Schwarz Inequality. For two random variables, 
E [ � xy � ] … {E[x2]}1/2 {E[y2]}1/2.

DEFINITION D.5 Convergence of a Random Vector or Matrix
Let xn denote a random vector and Xn a random matrix, and c and C denote a 
vector and matrix of constants with the same dimensions as xn and Xn, respectively. 
All of the preceding notions of convergence can be extended to (xn, c) and (Xn, C) 
by applying the results to the respective corresponding elements.

THEOREM D.12 Slutsky Theorem
For a continuous function g(xn) that is not a function of n,

 plim g(xn) = g(plim xn). (D-6)

D.2.3  CONVERGENCE OF FUNCTIONS

a particularly convenient result is the following.

the generalization of theorem D.12 to a function of several random variables is 
direct, as illustrated in the next example.

Example D.3  Probability Limit of a Function of x and s2

In random sampling from a population with mean m and variance s2, the exact expected value 
of xn

2/sn
2 will be difficult, if not impossible, to derive. But, by the Slutsky theorem,

plim 
xn

2

sn
2 =

m2

s2.

an application that highlights the difference between expectation and probability limit 
is suggested by the following useful relationships.

although the expected value of a function of xn may not equal the function of the 
expected value—it exceeds it if the function is concave—the probability limit of the 
function is equal to the function of the probability limit.

Z03_GREE1366_08_SE_APP.indd   9 3/14/17   9:25 PM



 APPENDIX D  ✦  Large-Sample Distribution theory D-10

THEOREM D.14 Rules for Probability Limits
If xn and yn are random variables with plim xn = c and plim yn = d, then

 plim(xn + yn) = c + d, (sum rule) (D-7)

 plim xnyn = cd,  (product rule) (D-8)

 plim xn/yn = c/d if d ≠ 0.  (ratio rule) (D-9)

If Wn is a matrix whose elements are random variables and if plim Wn = 
, then

 plim Wn
-1 = 
-1. (matrix inverse rule) (D-10)

If Xn and Yn are random matrices with plim Xn = A and plim Yn = B, then

 plim XnYn = AB. (matrix product rule) (D-11)

the Slutsky theorem highlights a comparison between the expectation of a random 
variable and its probability limit. theorem D.12 extends directly in two important 
directions. First, though stated in terms of convergence in probability, the same set of 
results applies to convergence in rth mean and almost sure convergence. Second, so 
long as the functions are continuous, the Slutsky theorem can be extended to vector 
or matrix valued functions of random scalars, vectors, or matrices. the following 
describe some specific applications. Some implications of the Slutsky theorem are now 
summarized.

DEFINITION D.6 Convergence in Probability to a Random Variable
The random variable xn converges in probability to the random variable x if 
limnS ∞ Prob( � xn - x � 7 e) = 0 for any positive e.

D.2.4  CONVERGENCE TO A RANDOM VARIABLE

the preceding has dealt with conditions under which a random variable converges to a 
constant, for example, the way that a sample mean converges to the population mean. 
to develop a theory for the behavior of estimators, as a prelude to the discussion of 
limiting distributions, we now consider cases in which a random variable converges not 
to a constant, but to another random variable. these results will actually subsume those 
in the preceding section, as a constant may always be viewed as a degenerate random 
variable, that is one with zero variance.

as before, we write plim xn = x to denote this case. the interpretation (at least the 
intuition) of this type of convergence is different when x is a random variable. the notion 
of closeness defined here relates not to the concentration of the mass of the probability 
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mechanism generating xn at a point c, but to the closeness of that probability mechanism 
to that of x. One can think of this as a convergence of the CDF of xn to that of x.

DEFINITION D.9 Convergence in Distribution
xn converges in distribution to a random variable x with CDF F(x) if 
limnS ∞ � Fn(xn) - F(x) � = 0 at all continuity points of F(x).

Once again, we have to revise our understanding of convergence when convergence is 
to a random variable.

theorem D.15 raises an interesting question. Suppose we let r grow, and suppose that 
xn ¡r.m.

x and, in addition, all moments are finite. if this holds for any r, do we conclude 
that these random variables have the same distribution? the answer to this longstanding 
problem in probability theory—the problem of the sequence of moments—is no. 
the sequence of moments does not uniquely determine the distribution. although 
convergence in rth mean and almost surely still both imply convergence in probability, 
it remains true, even with convergence to a random variable instead of a constant, that 
these are different forms of convergence.

D.2.5  CONVERGENCE IN DISTRIBUTION: LIMITING DISTRIBUTIONS

a second form of convergence is convergence in distribution. let xn be a sequence of 
random variables indexed by the sample size, and assume that xn has cdf Fn(xn).

THEOREM D.15 Convergence of Moments
Suppose xn ¡r.m.

x and E[ � x � r] is finite. then, limnS ∞E[ � xn � r] = E[ � x � r].

DEFINITION D.7 Almost Sure Convergence to a Random Variable
The random variable xn converges almost surely to the random variable x if and 
only if limnS ∞Prob( � xi - x � 7 e for all i Ú n) = 0 for all e 7 0.

DEFINITION D.8 Convergence in rth Mean to a Random Variable
The random variable xn converges in rth mean to the random variable x if and only 
if limnS ∞E[ � xn - x � r] = 0. This is labeled xn ¡r.m.

x. As before, the case r = 2 is 
labeled convergence in mean square.
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DEFINITION D.10 Limiting Distribution
If xn converges in distribution to x, where Fn(xn) is the CDF of xn, then F(x) is the 

limiting distribution of xn. This is written xn ¡d
x.

this statement is about the probability distribution associated with xn; it does 
not imply that xn converges at all. to take a trivial example, suppose that the exact 
distribution of the random variable xn is

Prob(xn = 1) =
1
2

+
1

n + 1
, Prob(xn = 2) =

1
2

-
1

n + 1
.

as n increases without bound, the two probabilities converge to 1
2, but xn does not 

converge to a constant.

the limiting distribution is often given in terms of the pdf, or simply the parametric 
family. For example, “the limiting distribution of xn is standard normal.”

Convergence in distribution can be extended to random vectors and matrices, although 
not in the element by element manner that we extended the earlier convergence forms. 
the reason is that convergence in distribution is a property of the CDF of the random 
variable, not the variable itself. thus, we can obtain a convergence result analogous to 
that in Definition D.9 for vectors or matrices by applying definition to the joint CDF for 
the elements of the vector or matrices. thus, xn ¡d

x if limnS ∞ � Fn(xn) - F(x) � = 0 
and likewise for a random matrix.

Example D.4  Limiting Distribution of tn− 1
Consider a sample of size n from a standard normal distribution. A familiar inference problem 
is the test of the hypothesis that the population mean is zero. The test statistic usually used 
is the t statistic:

tn - 1 =
xn

sn/2n
,

where

sn
2 = a n

i = 1(xi - xn)2

n - 1
.

The exact distribution of the random variable tn - 1 is t with n - 1 degrees of freedom. The 
density is different for every n:

 f(tn - 1) =
Γ(n/2)

Γ[(n - 1)/2]
 [(n - 1)p]-1/2 J1 +

tn - 1
2

n - 1
d

-n/2

, (D-12)

as is the CDF, Fn - 1(t) = L
t

-∞
fn - 1(x) dx. This distribution has mean zero and variance 

(n - 1)/(n - 3). As n grows to infinity, tn - 1 converges to the standard normal, which is written

tn - 1 ¡d
N[0, 1].
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For the random variable with t[n] distribution, the exact mean and variance are zero 
and n/(n - 2), whereas the limiting mean and variance are zero and one. the example 
might suggest that the limiting mean and variance are zero and one; that is, that the 
moments of the limiting distribution are the ordinary limits of the moments of the finite 
sample distributions. this situation is almost always true, but it need not be. it is possible 
to construct examples in which the exact moments do not even exist, even though the 
moments of the limiting distribution are well defined.3 even in such cases, we can usually 
derive the mean and variance of the limiting distribution.

limiting distributions, like probability limits, can greatly simplify the analysis of a 
problem. Some results that combine the two concepts are as follows.4

3See, for example, Maddala (1977a, p. 150).
4For proofs and further discussion, see, for example, greenberg and Webster (1983).

THEOREM D.16 Rules for Limiting Distributions
1. If xn ¡d

x and plim yn = c, then

 xnyn ¡d
cx, (D-13)

which means that the limiting distribution of xnyn is the distribution of cx. Also,

 xn + yn ¡d
x + c, (D-14)

 xn/yn ¡d
x/c, if c ≠ 0. (D-15)

2. If xn ¡d
x and g(xn) is a continuous function, then

 g(xn) ¡d
g(x). (D-16)

This result is analogous to the Slutsky theorem for probability limits. For an example, 
consider the tn random variable discussed earlier. The exact distribution of tn

2 is F[1, n]. 
But as n ¡ ∞ , tn converges to a standard normal variable. According to this result, 
the limiting distribution of tn

2 will be that of the square of a standard normal, which is 
chi-squared with one degree of freedom. We conclude, therefore, that

 F[1, n] ¡d
chi@squared[1]. (D-17)

We encountered this result in our earlier discussion of limiting forms of the standard 
normal family of distributions.

3. If yn has a limiting distribution and plim (xn - yn) = 0, then xn has the same limiting 
distribution as yn.

DEFINITION D.11 Limiting Mean and Variance
The limiting mean and variance of a random variable are the mean and variance of 
the limiting distribution, assuming that the limiting distribution and its moments exist.

Z03_GREE1366_08_SE_APP.indd   13 3/14/17   9:25 PM



 APPENDIX D  ✦  Large-Sample Distribution theory D-14

THEOREM D.17 Cramer–Wold Device
If xn ¡d

x, then c′xn ¡d
c′x for all conformable vectors c with real valued 

elements.

the third result in theorem D.16 combines convergence in distribution and in 
probability. the second result can be extended to vectors and matrices.

Example D.5  the F Distribution
Suppose that t1,n and t2,n are a K*1 and an M*1 random vector of variables whose 
components are independent with each distributed as t with n degrees of freedom. Then, as 
we saw in the preceding, for any component in either random vector, the limiting distribution 
is standard normal, so for the entire vector, tj,n ¡d

zj, a vector of independent standard 

normally distributed variables. The results so far show that 
(t1,n
=  t1,n)/K

(t2,n
=  t2,n)/M

¡d
F[K, M].

Finally, a specific case of result 2 in theorem D.16 produces a tool known as the Cramér–
Wold device.

by allowing c to be a vector with just a one in a particular position and zeros elsewhere, 
we see that convergence in distribution of a random vector xn to x does imply that each 
component does likewise.

D.2.6  CENTRAL LIMIT THEOREMS

We are ultimately interested in finding a way to describe the statistical properties of 
estimators when their exact distributions are unknown. the concepts of consistency 
and convergence in probability are important. but the theory of limiting distributions 
given earlier is not yet adequate. We rarely deal with estimators that are not consistent 
for something, though perhaps not always the parameter we are trying to estimate. 
as such,

if plim unn = u, then unn ¡d
u.

that is, the limiting distribution of unn is a spike. this is not very informative, nor is it at 
all what we have in mind when we speak of the statistical properties of an estimator. (to 
endow our finite sample estimator unn with the zero sampling variance of the spike at u 
would be optimistic in the extreme.)

as an intermediate step, then, to a more reasonable description of the statistical 
properties of an estimator, we use a stabilizing transformation of the random variable 
to one that does have a well-defined limiting distribution. to jump to the most common 
application, whereas

plim unn = u,

we often find that

zn = 2n (unn - u) ¡d
f(z),
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where f(z) is a well-defined distribution with a mean and a positive variance. an 
estimator which has this property is said to be root-n consistent. the single most 
important theorem in econometrics provides an application of this proposition. a basic 
form of the theorem is as follows.

THEOREM D.18 Lindeberg–Levy Central Limit Theorem (Univariate)
If x1, c, xn are a random sample from a probability distribution with finite mean 
m and finite variance s2 and xn = (1/n)a n

i = 1 xi, then 2n (xn - m) ¡d
N[0, s2].

A proof appears in Rao (1973, p. 127).

THEOREM D.19 Lindeberg–Feller Central Limit Theorem (with Unequal 
Variances)
Suppose that {xi}, i = 1, c, n, is a sequence of independent random variables 
with finite means mi and finite positive variances si

2. Let

mn =
1
n

 (m1 + m2 + g + mn), and sn
2 =

1
n

 (s1
2 + s2

2 + g, sn
2).

If no single term dominates this average variance, which we could state as 
limnS ∞max(si)/(2nsn) = 0, and if the average variance converges to a finite 
constant, s2 = limnS ∞sn

2, then 2n (xn - mn) ¡d
N[0, s2].

the result is quite remarkable as it holds regardless of the form of the parent 
distribution. For a striking example, return to Figure C.3. the distribution from which the 
data were drawn in that figure does not even remotely resemble a normal distribution. 
in samples of only four observations the force of the central limit theorem is clearly 
visible in the sampling distribution of the means. the sampling experiment in example 
D.6 shows the effect in a systematic demonstration of the result.

the lindeberg–levy theorem is one of several forms of this extremely powerful 
result. For our purposes, an important extension allows us to relax the assumption 
of equal variances. the lindeberg–Feller form of the central limit theorem is the 
centerpiece of most of our analysis in econometrics.

in practical terms, the theorem states that sums of random variables, regardless of their 
form, will tend to be normally distributed. the result is yet more remarkable in that it does 
not require the variables in the sum to come from the same underlying distribution. It requires, 
essentially, only that the mean be a mixture of many random variables, none of which is large 
compared with their sum. because nearly all the estimators we construct in econometrics 
fall under the purview of the central limit theorem, it is obviously an important result.

Proof of the lindeberg–Feller theorem requires some quite intricate mathematics 
[see, e.g., loeve (1977)] that are well beyond the scope of our work here. We do note an 
important consideration in this theorem. the result rests on a condition known as the 
Lindeberg condition. the sample mean computed in the theorem is a mixture of random 
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FIGURE D.2  The Exponential Distribution.
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variables from possibly different distributions. the lindeberg condition, in words, states 
that the contribution of the tail areas of these underlying distributions to the variance 
of the sum must be negligible in the limit. the condition formalizes the assumption in 
theorem D.19 that the average variance be positive and not be dominated by any single 
term. [For an intuitively crafted mathematical discussion of this condition, see White 
(2001, pp. 117–118).] the condition is essentially impossible to verify in practice, so it is 
useful to have a simpler version of the theorem that encompasses it.

Example D.6  the Lindeberg–Levy Central Limit theorem
We’ll use a sampling experiment to demonstrate the operation of the central limit theorem. 
Consider random sampling from the exponential distribution with mean 1.5—this is the setting 
used in Example C.4. The density is shown in Figure D.2.

We’ve drawn 1,000 samples of 3, 6, and 20 observations from this population and 
computed the sample means for each. For each mean, we then computed zin = 2n (xin - m), 
where i = 1, c, 1,000 and n is 3, 6, or 20. The three rows of figures in Figure D.3 show 
histograms of the observed samples of sample means and kernel density estimates of the 
underlying distributions for the three samples of transformed means. The force of the central 
limit is clearly visible in the shapes of the distributions.

THEOREM D.20 Liapounov Central Limit Theorem
Suppose that {xi} is a sequence of independent random variables with finite 
means mi and finite positive variances si

2 such that E[ � xi - mi � 2 + d] is finite 
for some d 7 0. If sn is positive and finite for all n sufficiently large, then 2n (xn - mn)/sn ¡d

N[0, 1].
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FIGURE D.3  The Central Limit Theorem.
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this version of the central limit theorem requires only that moments slightly larger than 
two be finite.

Note the distinction between the laws of large numbers in theorems D.5 and D.6 
and the central limit theorems. Neither asserts that sample means tend to normality. 
Sample means (i.e., the distributions of them) converge to spikes at the true mean. it is 
the transformation of the mean, 2n(xn - m)/s, that converges to standard normality. to 
see this at work, if you have access to the necessary software, you might try reproducing 
example D.6 using the raw means, xin. What do you expect to observe?
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THEOREM D.18A Multivariate Lindeberg–Levy Central Limit Theorem
If x1, c, xn are a random sample from a multivariate distribution with finite mean 
vector M and finite positive definite covariance matrix Q, then2n (xn - M) ¡d

N[0, Q],

where

xn =
1
n

 a
n

i = 1
xi.

To get from D.18 to D.18A (and D.19 to D.19A) we need to add a step. Theorem 
D.18 applies to the individual elements of the vector. A vector has a multivari-
ate normal distribution if the individual elements are normally distributed and 
if every linear combination is normally distributed. We can use Theorem D.18 
(D.19) for the individual terms and Theorem D.17 to establish that linear combi-
nations behave likewise. This establishes the extensions.

THEOREM D.19A Multivariate Lindeberg–Feller Central Limit Theorem
Suppose that x1, c, xn are a sample of random vectors such that 
E[xi] = Mi, Var[xi] = Qi, and all mixed third moments of the multivariate distri-
bution are finite. Let

Mn =
1
n

 a
n

i = 1
 Mi and Qn =

1
n

 a
n

i = 1
 Qi.

We assume that

lim
nS ∞

 Qn = Q,

where Q is a finite, positive definite matrix, and that for every i,

lim
nS ∞

(nQn)-1Qi = lim
nS ∞

¢ an
i = 1

 Qi≤-1

 Qi = 0.

We allow the means of the random vectors to differ, although in the cases that we 
will analyze, they will generally be identical. The second assumption states that 
individual components of the sum must be finite and diminish in significance. 
There is also an implicit assumption that the sum of matrices is nonsingular. 
Because the limiting matrix is nonsingular, the assumption must hold for large 
enough n, which is all that concerns us here. With these in place, the result is2n(xn - Mn) ¡d

N[0, Q].

For later purposes, we will require multivariate versions of these theorems. Proofs 
of the following may be found, for example, in greenberg and Webster (1983) or rao 
(1973) and references cited there.

the extension of the lindeberg–Feller theorem to unequal covariance matrices 
requires some intricate mathematics. the following is an informal statement of the 
relevant conditions. Further discussion and references appear in Fomby, Hill, and 
Johnson (1984) and greenberg and Webster (1983).
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D.2.7  THE DELTA METHOD

at several points in appendix C, we used a linear taylor series approximation to analyze 
the distribution and moments of a random variable. We are now able to justify this usage. 
We complete the development of theorem D.12 (probability limit of a function of a 
random variable), theorem D.16 (2) (limiting distribution of a function of a random 
variable), and the central limit theorems, with a useful result that is known as the delta 
method. For a single random variable (sample mean or otherwise), we have the following 
theorem.

Notice that the mean and variance of the limiting distribution are the mean and 
variance of the linear taylor series approximation:

g(zn) ≃ g(m) + g′(m)(zn - m).

the multivariate version of this theorem will be used at many points in the text.

THEOREM D.21 Limiting Normal Distribution of a Function
If 2n(zn - m) ¡d

N[0, s2] and if g(zn) is a continuous and continuously differ-
entiable function with g′(m) not equal to zero and not involving n, then

 2n[g(zn) - g(m)] ¡d
N[0, {g′(m)}2 s2]. (D-18)

THEOREM D.21A Limiting Normal Distribution of a Set of Functions
If zn is a K*1 sequence of vector-valued random variables such that 2n(zn - M) ¡d

N[0, �] and if c(zn) is a set of J continuous and continuously 
differentiable functions of zn not involving n with none of the rows of C(M) equal 
to zero, then

 2n[c(zn) - c(M)] ¡d
N[0, C(M)�C(M)′], (D-19)

where C(M) is the J*K matrix 0c(M)/0M′. The jth row of C(M) is the vector of 
partial derivatives of the jth function with respect to M′.

D.3 ASYMPTOTIC DISTRIBUTIONS

the theory of limiting distributions is only a means to an end. We are interested in the 
behavior of the estimators themselves. the limiting distributions obtained through the 
central limit theorem all involve unknown parameters, generally the ones we are trying 
to estimate. Moreover, our samples are always finite. thus, we depart from the limiting 
distributions to derive the asymptotic distributions of the estimators.
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DEFINITION D.12 Asymptotic Distribution
An asymptotic distribution is a distribution that is used to approximate the true 
finite sample distribution of a random variable.5

5We differ a bit from some other treatments—for example, White (2001), Hayashi (2000, p. 90) —at this point, 
because they make no distinction between an asymptotic distribution and the limiting distribution, although the 
treatments are largely along the lines discussed here. in the interest of maintaining consistency of the discussion, 
we prefer to retain the sharp distinction and derive the asymptotic distribution of an estimator, t by first obtaining 
the limiting distribution of 2n(t - U). by our construction, the limiting distribution of t is degenerate, whereas 
the asymptotic distribution of 2n(t - U) is not useful.

by far the most common means of formulating an asymptotic distribution (at least 
by econometricians) is to construct it from the known limiting distribution of a function 
of the random variable. if 2n[(xn - m)/s] ¡d

N[0, 1],

then approximately, or asymptotically, xn ∼ N[m, s2/n], which we write as

xn ∼
a

N[m, s2/n].

the statement “xn is asymptotically normally distributed with mean m and variance 
s2/n” says only that this normal distribution provides an approximation to the true 
distribution, not that the true distribution is exactly normal.

Example D.7   Asymptotic Distribution of the Mean of an Exponential 
Sample

In sampling from an exponential distribution with parameter u, the exact distribution of xn 
is that of u/(2n) times a chi-squared variable with 2n degrees of freedom. The asymptotic 
distribution is N[u, u2/n]. The exact and asymptotic distributions are shown in Figure D.4 for 
the case of u = 1 and n = 16.

extending the definition, suppose that Unn is an estimator of the parameter vector U. 
the asymptotic distribution of the vector Unn is obtained from the limiting distribution:

 2n(Unn - U) ¡d
N[0, V] (D-20)

implies that

 Unn ∼
a

N cU, 
1
n

 V d . (D-21)

this notation is read “Unn is asymptotically normally distributed, with mean vector U and 
covariance matrix (1/n)V.” the covariance matrix of the asymptotic distribution is the 
asymptotic covariance matrix and is denoted

asy.Var[Unn] =
1
n

 V.

Note, once again, the logic used to reach the result; (D-20) holds exactly as n S ∞ . 
We assume that it holds approximately for finite n, which leads to (D-21).
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FIGURE D.4  True Versus Asymptotic Distribution.
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DEFINITION D.13 Asymptotic Normality and Asymptotic Efficiency
An estimator Unn is asymptotically normal if (D-20) holds. The estimator is 
 asymptotically efficient if the covariance matrix of any other consistent, asymp-
totically normally distributed estimator exceeds (1/n)V by a nonnegative definite 
matrix.

For most estimation problems, these are the criteria used to choose an estimator.

Example D.8   Asymptotic Inefficiency of the Median in Normal 
Sampling

In sampling from a normal distribution with mean m and variance s2, both the mean xn and 
the median Mn of the sample are consistent estimators of m. The limiting distributions of both 
estimators are spikes at m, so they can only be compared on the basis of their asymptotic 
properties. The necessary results are

 xn ∼
a

N[m, s2/n], and Mn ∼
a

N[m, (p/2)s2/n]. (D-22)

Therefore, the mean is more efficient by a factor of p/2. (But, see Example 15.7 for a finite 
sample result.)

D.3.1  ASYMPTOTIC DISTRIBUTION OF A NONLINEAR FUNCTION

theorems D.12 and D.14 for functions of a random variable have counterparts in 
asymptotic distributions.
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THEOREM D.22 Asymptotic Distribution of a Nonlinear Function
If 2n(unn - u) ¡d

N[0, s2] and if g(u) is a continuous and continuously 
differentiable function with g′(u) not equal to zero and not involving n, then 
g(unn) ∼

a
N[g(u), (1/n){g′(u)}2 s2]. If Unn is a vector of parameter estimators such 

that Unn ∼
a

N[U, (1/n)V] and if c(U) is a set of J continuous functions not involving 
n, then c(Unn) ∼

a
N[c(U), (1/n)C(U)VC(U)′], where C(U) = 0c(U)/0U′.

Example D.9  Asymptotic Distribution of a Function of two Estimators
Suppose that bn and tn are estimators of parameters b and u such thatJbn

tn
R ∼

a
NJ ¢b

u
≤, ¢sbb sbu

sub suu
≤ R .

Find the asymptotic distribution of cn = bn/(1 - tn). Let g = b/(1 - u). By the Slutsky theorem, 
cn is consistent for g. We shall require

0g
0b

=
1

1 - u
= gb, 

0g
0u

=
b

(1 - u)2
= gu.

Let � be the 2 * 2 asymptotic covariance matrix given previously. Then the asymptotic 
variance of cn is

Asy. Var[cn] = (gb gu)� ¢gb

gu

≤ = gb
2sbb + gu

2suu + 2gbgusbu,

which is the variance of the linear Taylor series approximation:

gnn ≃ g + gb(bn - b) + gu(tn - u).

D.3.2  ASYMPTOTIC EXPECTATIONS

the asymptotic mean and variance of a random variable are usually the mean and 
variance of the asymptotic distribution. thus, for an estimator with the limiting 
distribution defined in 2n(Unn - U) ¡d

N[0, V],

the asymptotic expectation is U and the asymptotic variance is (1/n) V. this statement 
implies, among other things, that the estimator is “asymptotically unbiased.”

at the risk of clouding the issue a bit, it is necessary to reconsider one aspect of 
the previous description. We have deliberately avoided the use of consistency even 
though, in most instances, that is what we have in mind. the description thus far might 
suggest that consistency and asymptotic unbiasedness are the same. Unfortunately 
(because it is a source of some confusion), they are not. they are if the estimator 
is consistent and asymptotically normally distributed, or CaN. they may differ in 
other settings, however. there are at least three possible definitions of asymptotic 
unbiasedness:
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1. the mean of the limiting distribution of 2n(unn - u) is 0.
2. limnS ∞E[unn] = u. (D-23)
3. plim un = u.

in most cases encountered in practice, the estimator in hand will have all three properties, 
so there is no ambiguity. it is not difficult to construct cases in which the left-hand sides 
of all three definitions are different, however.6 there is no general agreement among 
authors as to the precise meaning of asymptotic unbiasedness, perhaps because the term 
is misleading at the outset; asymptotic refers to an approximation, whereas unbiasedness 
is an exact result.7 Nonetheless, the majority view seems to be that (2) is the proper 
definition of asymptotic unbiasedness.8 Note, though, that this definition relies on 
quantities that are generally unknown and that may not exist.

a similar problem arises in the definition of the asymptotic variance of an estimator. 
One common definition is9

 asy.Var[unn] =
1
n

 lim
nS ∞

E [{2n(unn - lim
nS ∞

E[unn])}2]. (D-24)

this result is a leading term approximation, and it will be sufficient for nearly all 
applications. Note, however, that like definition 2 of asymptotic unbiasedness, it relies 
on unknown and possibly nonexistent quantities.

Example D.10  Asymptotic Moments of the Normal Sample Variance
The exact expected value and variance of the variance estimator in a normal sample

 m2 =
1
n

 a
n

i = 1
(xi - x)2 (D-25)

are

 E[m2] =
(n - 1)s2

n
, (D-26)

and

 Var[m2] =
m4 - s4

n
-

2(m4 - 2s4)

n2 +
m4 - 3s4

n3 , (D-27)

where m4 = E[(x - m)4]. [See Goldberger (1964, pp. 97–99).] The leading term approximation 
would be

Asy. Var[m2] =
1
n

 (m4 - s4).

6See, for example, Maddala (1977a, p. 150).
7See, for example, theil (1971, p. 377).
8Many studies of estimators analyze the “asymptotic bias” of, say, unn as an estimator of a parameter u. in most 
cases, the quantity of interest is actually plim [unn - u]. See, for example, greene (1980b) and another example in 
Johnston (1984, p. 312).
9Kmenta (1986, p.165).
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DEFINITION D.14 Order nD

A sequence cn is of order nd, denoted O(nd), if and only if plim(1/nd)cn is a finite 
nonzero constant.

DEFINITION D.15 Order less than nD

A sequence cn, is of order less than nd, denoted o(nd), if and only if plim(1/nd)cn 
equals zero.

D.4 SEQUENCES AND THE ORDER OF A SEQUENCE

this section has been concerned with sequences of constants, denoted, for example, cn, 
and random variables, such as xn, that are indexed by a sample size, n. an important 
characteristic of a sequence is the rate at which it converges (or diverges). For example, 
as we have seen, the mean of a random sample of n observations from a distribution 
with finite mean, m, and finite variance, s2, is itself a random variable with variance 
gn

2 = s2/n. We see that as long as s2 is a finite constant, gn
2 is a sequence of constants 

that converges to zero. another example is the random variable x(1),n, the minimum 
value in a random sample of n observations from the exponential distribution with 
mean 1/u defined in example C.4. it turns out that x(1),n has variance 1/(nu)2. Clearly, 
this variance also converges to zero, but, intuition suggests, faster than s2/n does. On the 
other hand, the sum of the integers from one to n, Sn = n(n + 1)/2, obviously diverges 
as n S ∞ , albeit faster (one might expect) than the log of the likelihood function for 
the exponential distribution in example C.6, which is ln L(u) = n(ln u - uxn). as a 
final example, consider the downward bias of the maximum likelihood estimator of the 
variance of the normal distribution, cn = (n - 1)/n, which is a constant that converges 
to one. (See example C.5.)

We will define the rate at which a sequence converges or diverges in terms of the 
order of the sequence.

thus, in our examples, gn
2 is O(n-1), Var[x(1),n] is O(n-2) and o(n-1), Sn is O(n2) 

(d equals +2 in this case), ln L(u) is O(n) (d equals +1), and cn is O(1)(d = 0). important 
particular cases that we will encounter repeatedly in our work are sequences for which 
d = 1 or -1.

the notion of order of a sequence is often of interest in econometrics in the context 
of the variance of an estimator. thus, we see in Section D.3 that an important element 
of our strategy for forming an asymptotic distribution is that the variance of the limiting 
distribution of 2n(xn - m)/s is O(1). in example D.10 the variance of m2 is the sum of 
three terms that are O(n-1), O(n-2), and O(n-3). the sum is O(n-1), because n Var[m2] 
converges to m4 - s4, the numerator of the first, or leading term, whereas the second and 
third terms converge to zero. this term is also the dominant term of the sequence. Finally, 
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consider the two divergent examples in the preceding list. Sn is simply a deterministic 
function of n that explodes. However, ln L(u) = n ln u - u�ixi is the sum of a constant 
that is O(n) and a random variable with variance equal to n/u. the random variable 
“diverges” in the sense that its variance grows without bound as n increases.

A P P E N D I X  E

§
COMPUtatiON aND OPtiMiZatiON

E.1 INTRODUCTION

the computation of empirical estimates by econometricians involves using digital 
computers and software written either by the researchers themselves or by others.1 it is 
also a surprisingly balanced mix of art and science. it is important for software users to 
be aware of how results are obtained, not only to understand routine computations, but 
also to be able to explain the occasional strange and contradictory results that do arise. 
this appendix will describe some of the basic elements of computing and a number of 
tools that are used by econometricians.2 Section e.2 describes some techniques for 
computing certain integrals and derivatives that are recurrent in econometric 
applications. Section e.3 presents methods of optimization of functions. Some examples 
are given in Section e.4.

E.2 COMPUTATION IN ECONOMETRICS

this section will discuss some methods of computing integrals that appear frequently 
in econometrics.

1it is one of the interesting aspects of the development of econometric methodology that the adoption of certain 
classes of techniques has proceeded in discrete jumps with the development of software. Noteworthy examples 
include the appearance, both around 1970, of g. K. Joreskog’s liSrel [Joreskog and Sorbom (1981)] program, 
which spawned a still-growing industry in linear structural modeling, and tSP [Hall (1982, 1984)], which was 
among the first computer programs to accept symbolic representations of econometric models and which 
provided a significant advance in econometric practice with its lSQ procedure for systems of equations. an 
extensive survey of the evolution of econometric software is given in renfro (2007, 2009).
2this discussion is not intended to teach the reader how to write computer programs. For those who expect 
to do so, there are whole libraries of useful sources. three very useful works are Kennedy and gentle (1980), 
abramovitz and Stegun (1971), and especially Press et al. (2007). the third of these provides a wealth of expertly 
written programs and a large amount of information about how to do computation efficiently and accurately. 
a survey of many areas of computation is Judd (1998).
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E.2.1  COMPUTING INTEGRALS

One advantage of computers is their ability rapidly to compute approximations to 
complex functions such as logs and exponents. the basic functions, such as these, 
trigonometric functions, and so forth, are standard parts of the libraries of programs that 
accompany all scientific computing installations.3 but one of the very common 
applications that often requires some high-level creativity by econometricians is the 
evaluation of integrals that do not have simple closed forms and that do not typically 
exist in “system libraries.” We will consider several of these in this section. We will not 
go into detail on the nuts and bolts of how to compute integrals with a computer; rather, 
we will turn directly to the most common applications in econometrics.

E.2.2  THE STANDARD NORMAL CUMULATIVE DISTRIBUTION FUNCTION

the standard normal cumulative distribution function (cdf) is ubiquitous in econometric 
models. Yet this most homely of applications must be computed by approximation. there 
are a number of ways to do so.4 recall that what we desire is

Φ(x) = L
x

-∞
f(t) dt, where f(t) =

122p
 e-t2/2.

One way to proceed is to use a taylor series:

Φ(x) ≈ a
M

i = 0

1
i!

 
diΦ(x0)

dx0
i  (x - x0)

i.

the normal cdf has some advantages for this approach. First, the derivatives 
are simple and not integrals. Second, the function is analytic; as M S ∞ , the 
approximation converges to the true value. third, the derivatives have a simple form; 
they are the Hermite polynomials and they can be computed by a simple recursion. 
the 0th term in the preceding expansion is Φ(x) evaluated at the expansion point. the 
first derivative of the cdf is the pdf, so the terms from 2 onward are the derivatives 
of f(x), once again evaluated at x0. the derivatives of the standard normal pdf obey 
the recursion

fi/f(x) = -xfi - 1/f(x) - (i - 1)fi - 2/f(x),

where fi is dif(x)/dxi. the zero and one terms in the sequence are one and -x. the next 
term is x2 - 1, followed by 3x - x3 and x4 - 6x2 + 3, and so on. the approximation 
can be made more accurate by adding terms. Consider using a fifth-order taylor series 
approximation around the point x = 0, where Φ(0) = 0.5 and f(0) = 0.3989423. 
evaluating the derivatives at zero and assembling the terms produces the approximation 
Φ(x) ≈ 1/2 + 0.3989423[x - x3/6 + x5/40].

[Some of the terms (every other one, in fact) will conveniently drop out.] Figure e.1 
shows the actual values (F) and approximate values (FA) over the range -2 to 2. the 
figure shows two important points. First, the approximation is remarkably good over 

3Of course, at some level, these must have been programmed as approximations by someone.

4Many system libraries provide a related function, the error function, erf(x) = (2/2p)1x
0 e-t2 dt. if this is available, 

then the normal cdf can be obtained from Φ(x) = 1
2 + 1

2 erf(x/22), x Ú 0 and Φ(x) = 1 - Φ(-x), x … 0.

Z03_GREE1366_08_SE_APP.indd   2 3/14/17   9:26 PM



E-3  PArt VI  ✦   Appendices

most of the range. Second, as is usually true for taylor series approximations, the quality 
of the approximation deteriorates as one gets far from the expansion point.

Unfortunately, it is the tail areas of the standard normal distribution that are usually 
of interest, so the preceding is likely to be problematic. an alternative approach that is 
used much more often is a polynomial approximation5:

Φ(- � x � ) = f(x)a
5

i = 1
ait

i + e(x), where t = 1/[1 + a0 � x � ].

(the complement is taken if x is positive.) the error of approximation is less than 
{7.5 * 10-8 for all x. (Note that the error exceeds the function value at � x � 7 5.7, so 
this is the operational limit of this approximation.)

E.2.3  THE GAMMA AND RELATED FUNCTIONS

the standard normal cdf is probably the most common application of numerical 
integration of a function in econometrics. another very common application is the class 
of gamma functions. For positive constant P, the gamma function is

Γ(P) = L
∞

0
tP - 1e-t dt.

the gamma function obeys the recursion Γ(P) = (P - 1)Γ(P - 1), so for integer values 
of P, Γ(P) = (P - 1)! this result suggests that the gamma function can be viewed as 
a generalization of the factorial function for noninteger values. another convenient 
value is Γ(1

2) = 2p. by making a change of variable, it can be shown that for positive 
constants a, c, and P,

5reported by abramovitz and Stegun (1971, p. 932).

FIGURE E.1  Approximation to Normal cdf.
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 L
∞

0
tP - 1e-atc

 dt = L
∞

0
t-(P + 1)e-a/tcdt = a 1

c
ba-P/cΓaP

c
b . (E-1)

as a generalization of the factorial function, the gamma function will usually 
overflow for the sorts of values of P that normally appear in applications. the log of the 
function should normally be used instead. the function ln Γ(P) can be approximated 
remarkably accurately with only a handful of terms and is very easy to program. a 
number of approximations appear in the literature; they are generally modifications of 
Stirling’s approximation to the factorial function P! ≈ (2p P)1/2PPe-P, so

ln Γ(P) ≈ (P - 0.5) ln P - P + 0.5 ln(2p) + C + e(P),

where C is the correction term6 and e(P) is the approximation error.7

the derivatives of the gamma function are

drΓ(P)

dPr = L
∞

0
(ln t)rtP - 1e-t dt.

the first two derivatives of ln Γ(P) are denoted Ψ(P) = Γ′/Γ and Ψ′(P) = (ΓΓ″ - Γ′2)/Γ2 
and are known as the digamma and trigamma functions.8 the beta function, denoted 
b(a, b),

b(a, b) = L
1

0
ta - 1(1 - t)b - 1 dt =

Γ(a)Γ(b)

Γ(a + b)
,

is related.

E.2.4  APPROXIMATING INTEGRALS BY QUADRATURE

the digamma and trigamma functions, and the gamma function for noninteger values 
of P and values that are not integers plus 1

2, do not exist in closed form and must be 
approximated. Most other applications will also involve integrals for which no simple 
computing function exists. the simplest approach to approximating

F(x) = L
U(x)

L(x)
f(t) dt

is likely to be a variant of Simpson’s rule, or the trapezoid rule. For example, one 
approximation is9

F(x) ≈ ∆[1
3 f1 + 4

3 f2 + 2
3 f3 + 4

3 f4 + g + 2
3 fN - 2 + 4

3 fN - 1 + 1
3 fN],

6See, for example, abramovitz and Stegun (1971, p. 257), Press et al. (2007), or rao (1973, p. 59).
7For example, one widely used formula is C = z-1/12 - z-3/360 - z-5/1260 + z-7/1680 - q, where z = P and 
q = 0 if P 7 18, or z = P + J and q = ln[P(P + 1)(P + 2) c(P + J - 1)], where J = 18 - iNt(P), if not. 
Note, in the approximation, we write Γ(P) = (P!)/P + a correction.
8tables of specific values for the gamma, digamma, and trigamma functions appear in abramovitz and Stegun 
(1971). Most contemporary econometric programs have built-in functions for these common integrals, so the 
tables are not generally needed.
9See Press et al. (2007).
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where fj is the function evaluated at N equally spaced points in [L, U] including the 
endpoints and ∆ = (L - U)/(N - 1). there are a number of problems with this 
method, most notably that it is difficult to obtain satisfactory accuracy with a moderate 
number of points.

Gaussian quadrature is a popular method of computing integrals. the general 
approach is to use an approximation of the form

L
U

L
W(x)f(x) dx ≈ a

M

j = 1
wjf(aj),

where W(x) is viewed as a “weighting” function for integrating f(x), wj is the 
quadrature weight, and aj is the quadrature abscissa. Different weights and abscissas 
have been derived for several weighting functions. two weighting functions common in 
econometrics are

W(x) = xce-x, x ∈ [0, ∞),

for which the computation is called Gauss–Laguerre quadrature, and

W(x) = e-x2
, x ∈ (- ∞ , ∞),

for which the computation is called Gauss–Hermite quadrature. the theory for deriving 
weights and abscissas is given in Press et al. (2007). tables of weights and abscissas for 
many values of M are given by abramovitz and Stegun (1971). applications of the 
technique appear in Chapters 14 and 17.

E.3 OPTIMIZATION

Nonlinear optimization (e.g., maximizing log-likelihood functions) is an intriguing 
practical problem. theory provides few hard and fast rules, and there are relatively few 
cases in which it is obvious how to proceed. this section introduces some of the 
terminology and underlying theory of nonlinear optimization.10 We begin with a general 
discussion on how to search for a solution to a nonlinear optimization problem and 
describe some specific commonly used methods. We then consider some practical 
problems that arise in optimization. an example is given in the final section.

Consider maximizing the quadratic function

F(U) = a + b′U - 1
2 U′CU,

b is a vector and C is a positive definite matrix. the first-order condition for a maximum 
is

 
0F(U)

0U
= b - CU = 0. (E-2)

10 there are numerous excellent references that offer a more complete exposition. among these are Quandt 
(1983), bazaraa and Shetty (1979), Fletcher (1980), and Judd (1998). We note, modern econometric computer 
packages such as Stata, SAS, NLOGIT, MATLAB, R, and GAUSS all provide a “Maximize” (or “Minimize”) 
“command” that allows a user to define a function to be maximized symbolically, and that put these details 
behind the curtain.
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this set of linear equations has the unique solution

 U = C-1b. (E-3)

this is a linear optimization problem. Note that it has a closed-form solution; for any a, 
b, and C, the solution can be computed directly.11 in the more typical situation,

 
0F(U)

0U
= 0 (E-4)

is a set of nonlinear equations that cannot be solved explicitly for U.12 the techniques 
considered in this section provide systematic means of searching for a solution.

We now consider the general problem of maximizing a function of several variables:

 maximizeu F(U), (E-5)

where F(U) may be a log-likelihood or some other function. Minimization of F(U) is 
handled by maximizing -F(U). two special cases are

 F(U) = a
n

i = 1
fi(U), (E-6)

which is typical for maximum likelihood problems, and the least squares problem,13

 fi(U) = -(yi - f(xi, U))2. (E-7)

We treated the nonlinear least squares problem in detail in Chapter 7. an obvious way 
to search for the U that maximizes F(U) is by trial and error. if U has only a single element 
and it is known approximately where the optimum will be found, then a grid search will 
be a feasible strategy. an example is a common time-series problem in which a one-
dimensional search for a correlation coefficient is made in the interval (-1, 1). the grid 
search can proceed in the obvious fashion—that is, c, -0.1, 0, 0.1, 0.2, c, then 
unmax - 0.1 to unmax + 0.1 in increments of 0.01, and so on—until the desired precision is 
achieved.14 if U contains more than one parameter, then a grid search is likely to be 
extremely costly, particularly if little is known about the parameter vector at the outset. 
Nonetheless, relatively efficient methods have been devised.15

there are also systematic, derivative-free methods of searching for a function optimum 
that resemble in some respects the algorithms that we will examine in the next section. 
the downhill simplex (and other simplex) methods16 have been found to be very fast and 
effective for some problems. another entry in the econometrics literature is the method 
of simulated annealing.17 these derivative-free methods, particularly the latter, are often 
very effective in problems with many variables in the objective function, but they usually 
require far more function evaluations than the methods based on derivatives that are 

11Notice that the constant a is irrelevant to the solution. Many maximum likelihood problems are presented with 
the preface “neglecting an irrelevant constant.” For example, the log-likelihood for the normal linear regression 
model contains a term, (-n/2) ln(2p), that can be discarded.
12See, for example, the normal equations for the nonlinear least squares estimators of Chapter 7.
13least squares is, of course, a minimization problem. the negative of the criterion is used to maintain consistency 
with the general formulation.
14there are more efficient methods of carrying out a one-dimensional search, for example, the golden section 
method. See Press et al. (2007).
15Quandt (1983) and Fletcher (1980) contain further details.
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considered below. because the problems typically analyzed in econometrics involve 
relatively few parameters but often quite complex functions involving large numbers of 
terms in a summation, on balance, the gradient methods are usually going to be preferable.18

E.3.1  ALGORITHMS

a more effective means of solving most nonlinear maximization problems is by an 
iterative algorithm:

beginning from initial value U0, at entry to iteration t, if Ut is not the optimal value 
for U, compute direction vector �t, step size lt, then

 Ut + 1 = Ut + lt�t. (E-8)

Figure e.2 illustrates the structure of an iteration for a hypothetical function of two 
variables. the direction vector �t is shown in the figure with Ut. the dashed line is the 
set of points Ut + lt�t. Different values of lt lead to different contours; for this Ut and 
�t, the best value of lt is about 0.5.

Notice in Figure e.2 that for a given direction vector �t and current parameter vector 
Ut, a secondary optimization is required to find the best lt. translating from Figure e.2, 
we obtain the form of this problem as shown in Figure e.3. this subsidiary search is 
called a line search, as we search along the line Ut + lt�t for the optimal value of F(.). 
the formal solution to the line search problem would be the lt that satisfies

 
0F(Ut + lt�t)

0lt
= g(Ut + lt�t)′�t = 0, (E-9)

where g is the vector of partial derivatives of F(.) evaluated at Ut + lt�t. in general, 
this problem will also be a nonlinear one. in most cases, adding a formal search for lt 
will be too expensive, as well as unnecessary. Some approximate or ad hoc method will 
usually be chosen.

it is worth emphasizing that finding the lt that maximizes F(Ut + lt�t) at a given 
iteration does not generally lead to the overall solution in that iteration. this situation 
is clear in Figure e.3, where the optimal value of lt leads to F(.) = 2.0, at which point 
we reenter the iteration.

E.3.2  COMPUTING DERIVATIVES

For certain functions, the programming of derivatives may be quite difficult. Numeric 
approximations can be used, although it should be borne in mind that analytic derivatives 
obtained by formally differentiating the functions involved are to be preferred. First 
derivatives can be approximated by using

0F(U)

0ui
≈

F( gui + eg) - F( gui - eg)

2e
.

16See Nelder and Mead (1965) and Press et al. (2007).
17See goffe, Ferrier, and rodgers (1994) and Press et al. (2007).
18goffe, Ferrier, and rodgers (1994) did find that the method of simulated annealing was quite adept at finding 
the best among multiple solutions. this problem is common for derivative-based methods, because they usually 
have no method of distinguishing between a local optimum and a global one.
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FIGURE E.2  Iteration.
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the choice of e is a remaining problem.19

there are three drawbacks to this means of computing derivatives compared with 
using the analytic derivatives. a possible major consideration is that it may substantially 
increase the amount of computation needed to obtain a function and its gradient. in 
particular, K + 1 function evaluations (the criterion and K derivatives) are replaced 
with 2K + 1 functions. the latter may be more burdensome than the former, depending 
on the complexity of the partial derivatives compared with the function itself. the 
comparison will depend on the application. but in most settings, careful programming 
that avoids superfluous or redundant calculation can make the advantage of the analytic 
derivatives substantial. Second, the choice of e can be problematic. if it is chosen too 
large, then the approximation will be inaccurate. if it is chosen too small, then there may 
be insufficient variation in the function to produce a good estimate of the derivative. 
a compromise that is likely to be effective is to compute ei separately for each parameter, 
as in20

ei = Max[a � ui � , g].

19extensive discussion may be found in Quandt (1983).
20See goldfeld and Quandt (1983).
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the values a and g should be relatively small, such as 10-5. third, although numeric 
derivatives computed in this fashion are likely to be reasonably accurate, in a sum 
of a large number of terms, say, several thousand, enough approximation error can 
accumulate to cause the numerical derivatives to differ significantly from their analytic 
counterparts. Second derivatives can also be computed numerically. in addition to the 
preceding problems, however, it is generally not possible to ensure negative definiteness 
of a Hessian computed in this manner. Unless the choice of e is made extremely carefully, 
an indefinite matrix is a possibility. in general, the use of numeric derivatives should be 
avoided if the analytic derivatives are available.

E.3.3  GRADIENT METHODS

the most commonly used algorithms are gradient methods, in which

 �t = Wtgt, (E-10)

where Wt is a positive definite matrix and gt is the gradient of F(Ut):

 gt = g(Ut) =
0F(Ut)

0Ut

. (E-11)

these methods are motivated partly by the following. Consider a linear taylor series 
approximation to F(Ut + lt�t) around lt = 0:

 F(Ut + lt�t) ≃ F(Ut) + ltg(Ut)′�t. (E-12)

let F(Ut + lt�t) equal Ft + 1. then,

Ft + 1 - Ft ≈ ltg
=
t�t.

if �t = Wtgt, then

Ft + 1 - Ft ≈ ltgt
=Wtgt.

FIGURE E.3  Line Search.
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if gt is not 0 and lt is small enough, then Ft + 1 - Ft must be positive. thus, if F(U) is not 
already at its maximum, then we can always find a step size such that a gradient-type 
iteration will lead to an increase in the function. (recall that Wt is assumed to be positive 
definite.)

in the following, we will omit the iteration index t, except where it is necessary to 
distinguish one vector from another. the following are some commonly used algorithms.21

Steepest Ascent, the simplest algorithm to employ is the steepest ascent method, 
which uses

 W = I so that � = g. (E-13)

as its name implies, the direction is the one of greatest increase of F(.). another virtue 
is that the line search has a straightforward solution; at least near the maximum, the 
optimal l is

 l =
-g′g
g′Hg

, (E-14)

where

H =
02F(U)

0U0U′
.

therefore, the steepest ascent iteration is

 Ut + 1 = Ut -
gt
=gt

gt
=Htgt

 gt
. (E-15)

Computation of the second derivatives matrix may be extremely burdensome. also, if 
Ht is not negative definite, which is likely if Ut is far from the maximum, the iteration 
may diverge. a systematic line search can bypass this problem. this algorithm usually 
converges very slowly, however, so other techniques are usually used.

Newton’s Method the template for most gradient methods in common use is Newton’s 
method. the basis for Newton’s method is a linear taylor series approximation. 
expanding the first-order conditions,

0F(U)

0U
= 0,

equation by equation, in a linear taylor series around an arbitrary U0 yields

 
0F(U)

0U
≈ g0 + H0(U - U0) = 0, (E-16)

where the superscript indicates that the term is evaluated at U0. Solving for U and then 
equating U to Ut + 1 and U0 to Ut, we obtain the iteration

 Ut + 1 = Ut - Ht
-1gt. (E-17)

21a more extensive catalog may be found in Judge et al. (1985, appendix b). those mentioned here are some of 
the more commonly used ones and are chosen primarily because they illustrate many of the important aspects of 
nonlinear optimization.

Z03_GREE1366_08_SE_APP.indd   10 3/14/17   9:26 PM



E-11  PArt VI  ✦   Appendices

thus, for Newton’s method,

 W = -H-1,  � = -H-1g,  l = 1. (E-18)

Newton’s method will converge very rapidly in many problems. if the function is 
quadratic, then this method will reach the optimum in one iteration from any starting 
point. if the criterion function is globally concave, as it is in a number of problems that 
we shall examine in this text, then it is probably the best algorithm available. this method 
is very well suited to maximum likelihood estimation.

Alternatives to Newton’s Method Newton’s method is very effective in some settings, 
but it can perform very poorly in others. if the function is not approximately quadratic 
or if the current estimate is very far from the maximum, then it can cause wide swings in 
the estimates and even fail to converge at all. a number of algorithms have been devised 
to improve upon Newton’s method. an obvious one is to include a line search at each 
iteration rather than use l = 1. two problems remain, however. at points distant from 
the optimum, the second derivatives matrix may not be negative definite, and, in any 
event, the computational burden of computing H may be excessive.

the quadratic hill-climbing method proposed by goldfeld, Quandt, and trotter 
(1966) deals directly with the first of these problems. in any iteration, if H is not negative 
definite, then it is replaced with

 Ha = H - aI, (E-19)

where a is a positive number chosen large enough to ensure the negative definiteness 
of Ha. another suggestion is that of greenstadt (1967), which uses, at every iteration,

 Hp = - a
n

i = 1
�pi � cici

=, (E-20)

where pi is the ith characteristic root of H and ci is its associated characteristic vector. 
Other proposals have been made to ensure the negative definiteness of the required 
matrix at each iteration.22

Quasi-Newton Methods: Davidon–Fletcher–Powell a very effective class of algorithms 
has been developed that eliminates second derivatives altogether and has excellent 
convergence properties, even for ill-behaved problems. these are the quasi-Newton 
methods, which form

Wt + 1 = Wt + Et,

where Et is a positive definite matrix.23 as long as W0 is positive definite—I is commonly 
used—Wt will be positive definite at every iteration. in the Davidon–Fletcher–Powell 
(DFP) method, after a sufficient number of iterations, Wt + 1 will be an approximation to 
-H-1. let

 Dt = lt�t, and Gt = g(Ut + 1) - g(Ut). (E-21)

22See, for example, goldfeld and Quandt (1983).
23See Fletcher (1980).
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the DFP variable metric algorithm uses

 Wt + 1 = Wt +
DtDt

=

Dt
=Gt

+
WtGtGt

=Wt

Gt
=WtGt

. (E-22)

Notice that in the DFP algorithm, the change in the first derivative vector is used in W; 
an estimate of the inverse of the second derivatives matrix is being accumulated.

the variable metric algorithms are those that update W at each iteration while 
preserving its definiteness. For the DFP method, the accumulation of Wt + 1 is of the form

Wt + 1 = Wt + aa′ + bb′ = Wt + [a b][a b]′.

the two-column matrix [a b] will have rank two; hence, DFP is called a rank two update 
or rank two correction. the Broyden–Fletcher–Goldfarb–Shanno (BFGS) method is a 
rank three correction that subtracts vdd′ from the DFP update, where v = (Gt

=WtGt) and

dt = ¢ 1
Dt
=Gt

≤Dt - ¢ 1
Gt
=WtGt

≤WtGt.

there is some evidence that this method is more efficient than DFP. Other methods, 
such as Broyden’s method, involve a rank one correction instead. any method that is 
of the form

Wt + 1 = Wt + QQ′

will preserve the definiteness of W regardless of the number of columns in Q.
the DFP and bFgS algorithms are extremely effective and are among the most 

widely used of the gradient methods. an important practical consideration to keep 
in mind is that although Wt accumulates an estimate of the negative inverse of the 
second derivatives matrix for both algorithms, in maximum likelihood problems it rarely 
converges to a very good estimate of the covariance matrix of the estimator and should 
generally not be used as one.

E.3.4  ASPECTS OF MAXIMUM LIKELIHOOD ESTIMATION

Newton’s method is often used for maximum likelihood problems. For solving a 
maximum likelihood problem, the method of scoring replaces H with

 H = E[H(U)], (E-23)

which will be recognized as the inverse of the asymptotic covariance of the maximum 
likelihood estimator. there is some evidence that where it can be used, this method 
performs better than Newton’s method. the exact form of the expectation of the Hessian 
of the log likelihood is rarely known, however.24 Newton’s method, which uses actual 
instead of expected second derivatives, is generally used instead.

One-Step Estimation a convenient variant of Newton’s method is the one-step 
maximum likelihood estimator. it has been shown that if U0 is any consistent initial 

24amemiya (1981) provides a number of examples.
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estimator of U and H* is H, H, or any other asymptotically equivalent estimator of 
Var[g(UnMle)], then

 U1 = U0 - (H*)-1g0 (E-24)

is an estimator of U that has the same asymptotic properties as the maximum likelihood 
estimator.25 (Note that it is not the maximum likelihood estimator. as such, for example, 
it should not be used as the basis for likelihood ratio tests.)

Covariance Matrix Estimation in computing maximum likelihood estimators, a 
commonly used method of estimating H simultaneously simplifies the calculation of 
W and solves the occasional problem of indefiniteness of the Hessian. the method of 
berndt et al. (1974) replaces W with

 Wn = Jan
i = 1

gigi
= R -1

= (G′G)-1, (E-25)

where

 gi =
0 ln f(yi � xi, U)

0U
. (E-26)

then, G is the n * K matrix with ith row equal to gi
=. although Wn  and other suggested 

estimators of (-H)-1 are asymptotically equivalent, Wn  has the additional virtues that it 
is always nonnegative definite, and it is only necessary to differentiate the terms in the 
log-likelihood once to compute it.

The Lagrange Multiplier Statistic the use of Wn  as an estimator of (-H)-1 brings 
another intriguing convenience in maximum likelihood estimation. When testing 
restrictions on parameters estimated by maximum likelihood, one approach is to use 
the Lagrange multiplier statistic. We will examine this test at length at various points in 
this book, so we need only sketch it briefly here. the logic of the lM test is as follows. 
the gradient g(U) of the log-likelihood function equals 0 at the unrestricted maximum 
likelihood estimators (that is, at least to within the precision of the computer program in 
use). if Unr is an Mle that is computed subject to some restrictions on U, then we know 
that g(Unr) ≠ 0. the lM test is used to test whether, at Unr, gr is significantly different 
from 0 or whether the deviation of gr from 0 can be viewed as sampling variation. the 
covariance matrix of the gradient of the log-likelihood is -H, so the Wald statistic for 
testing this hypothesis is W = g′(-H)-1g. Now, suppose that we use Wn  to estimate 
-H-1. let G be the n * K matrix with ith row equal to gi

=, and let i denote an n * 1 
column of ones. then the lM statistic can be computed as

lM = i′G(G′G)-1G′i.

because i′i = n,
lM = n[i′G(G′G)-1G′i/n] = nRi

2,

where Ri
2 is the uncentered R2 in a regression of a column of ones on the derivatives of 

the log-likelihood function.

The Concentrated Log-Likelihood Many problems in maximum likelihood estimation 
can be formulated in terms of a partitioning of the parameter vector U = [U1, U2] such 

25See, for example, rao (1973).
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that at the solution to the optimization problem, U2, Ml, can be written as an explicit 
function of U1, Ml. When the solution to the likelihood equation for U2 produces

U2, Ml = t(U1, Ml),

then, if it is convenient, we may “concentrate” the log-likelihood function by writing

F*(U1, U2) = F[U1, t(U1)] = Fc(U1).

the unrestricted solution to the problem MaxU1
Fc(U1) provides the full solution to the 

optimization problem. Once the optimizing value of U1 is obtained, the optimizing value 
of U2 is simply t(Un1, Ml). Note that F*(U1, U2) is a subset of the set of values of the log-
likelihood function, namely those values at which the second parameter vector satisfies 
the first-order conditions.26

E.3.5  OPTIMIZATION WITH CONSTRAINTS

Occasionally, some of or all the parameters of a model are constrained, for example, 
to be positive in the case of a variance or to be in a certain range, such as a correlation 
coefficient. Optimization subject to constraints is often yet another art form. the 
elaborate literature on the general problem provides some guidance—see, for example, 
appendix b in Judge et al. (1985)—but applications still, as often as not, require some 
creativity on the part of the analyst. in this section, we will examine a few of the most 
common forms of constrained optimization as they arise in econometrics.

Parametric constraints typically come in two forms, which may occur simultaneously 
in a problem. equality constraints can be written c(U) = 0, where cj(U) is a continuous 
and differentiable function. typical applications include linear constraints on slope 
vectors, such as a requirement that a set of elasticities in a log-linear model add to 
one; exclusion restrictions, which are often cast in the form of interesting hypotheses 
about whether or not a variable should appear in a model (i.e., whether a coefficient is 
zero or not); and equality restrictions, such as the symmetry restrictions in a translog 
model, which require that parameters in two different equations be equal to each other. 
inequality constraints, in general, will be of the form aj … cj(U) … bj, where aj and bj are 
known constants (either of which may be infinite). Once again, the typical application in 
econometrics involves a restriction on a single parameter, such as s 7 0 for a variance 
parameter, -1 … r … 1 for a correlation coefficient, or bj Ú 0 for a particular slope 
coefficient in a model. We will consider the two cases separately.

in the case of equality constraints, for practical purposes of optimization, there are 
usually two strategies available. One can use a lagrangean multiplier approach. the new 
optimization problem is

MaxU,LL(U, L) = F(U) + L′c(U).

the necessary conditions for an optimum are

 
0L(U, L)

0U
= g(U) + C(U)′L = 0,

 
0L(U, L)

0L
= c(U) = 0,

26a formal proof that this is a valid way to proceed is given by amemiya (1985, pp. 125–127).
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where g(U) is the familiar gradient of F(U) and C(U) is a J * K matrix of derivatives 
with jth row equal to 0cj/0U′. the joint solution will provide the constrained optimizer, 
as well as the lagrange multipliers, which are often interesting in their own right. the 
disadvantage of this approach is that it increases the dimensionality of the optimization 
problem. an alternative strategy is to eliminate some of the parameters by either 
imposing the constraints directly on the function or by solving out the constraints. For 
exclusion restrictions, which are usually of the form uj = 0, this step usually means 
dropping a variable from a model. Other restrictions can often be imposed just by 
building them into the model. For example, in a function of u1, u2, and u3, if the restriction 
is of the form u3 = u1u2, then u3 can be eliminated from the model by a direct substitution.

inequality constraints are more difficult. For the general case, one suggestion is to 
transform the constrained problem into an unconstrained one by imposing some sort of 
penalty function into the optimization criterion that will cause a parameter vector that 
violates the constraints, or nearly does so, to be an unattractive choice. For example, 
to force a parameter uj to be nonzero, one might maximize the augmented function 
F(U) - � 1/uj � . this approach is feasible, but it has the disadvantage that because the 
penalty is a function of the parameters, different penalty functions will lead to different 
solutions of the optimization problem. For the most common problems in econometrics, 
a simpler approach will usually suffice. One can often reparameterize a function so 
that the new parameter is unconstrained. For example, the “method of squaring” is 
sometimes used to force a parameter to be positive. if we require uj to be positive, then 
we can define uj = a2 and substitute a2 for uj wherever it appears in the model. then 
an unconstrained solution for a is obtained. an alternative reparameterization for a 
parameter that must be positive that is often used is uj = exp(aj). to force a parameter 
to be between zero and one, we can use the function uj = 1/[1 + exp(aj)]. the range of 
a is now unrestricted. experience suggests that a third, less orthodox approach works 
very well for many problems. When the constrained optimization is begun, there is a 
starting value U0 that begins the iterations. Presumably, U0 obeys the restrictions. (if not, 
and none can be found, then the optimization process must be terminated immediately.) 
the next iterate, U1, is a step away from U0, by U1 = U0 + l0D

0. Suppose that U1 violates 
the constraints. by construction, we know that there is some value U*

1 between U0 and 
U1 that does not violate the constraint, where “between” means only that a shorter step 
is taken. therefore, the next value for the iteration can be U*

1. the logic is true at every 
iteration, so a way to proceed is to alter the iteration so that the step length is shortened 
when necessary when a parameter violates the constraints.

E.3.6  SOME PRACTICAL CONSIDERATIONS

Different algorithms may perform differently in given settings. indeed, for some problems, 
one algorithm may fail to converge whereas another will succeed in finding a solution 
without great difficulty. in view of this, computer programs such as Gauss, and MatLab 
that offer a menu of different preprogrammed algorithms can be particularly useful. it 
is sometimes worth the effort to try more than one algorithm on a given problem.

Step Sizes except for the steepest ascent case, an optimal line search is likely to be 
infeasible or to require more effort than it is worth in view of the potentially large 
number of function evaluations required. in most cases, the choice of a step size is likely 
to be rather ad hoc. but within limits, the most widely used algorithms appear to be 
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robust to inaccurate line searches. For example, the method of squeezing, which tries 
l = 1, 12, 14, and so on until an improvement in the function results.27 although this 
approach is obviously a bit unorthodox, it appears to be quite effective when used with 
the gauss–Newton method for nonlinear least squares problems. (See Chapter 7.) a 
somewhat more elaborate rule is suggested by berndt et al. (1974). Choose an e between 
0 and 12, and then find a l such that

 e 6
F(U + l�) - F(U)

lg′∆
6 1 - e. (E-27)

Of course, which value of e to choose is still open, so the choice of l remains ad hoc. 
Moreover, in neither of these cases is there any optimality to the choice; we merely find 
a l that leads to a function improvement. Other authors have devised relatively efficient 
means of searching for a step size without doing the full optimization at each iteration.28

Assessing Convergence ideally, the iterative procedure should terminate when 
the gradient is zero. in practice, this step will not be possible, primarily because of 
accumulated rounding error in the computation of the function and its derivatives. 
therefore, a number of alternative convergence criteria are used. Most of them are 
based on the relative changes in the function or the parameters. there is some variation 
in those used in different computer programs, and there are some pitfalls that should 
be avoided. a critical absolute value for the elements of the gradient or its norm will 
be affected by any scaling of the function, such as normalizing it by the sample size. 
Similarly, stopping on the basis of small absolute changes in the parameters can lead 
to premature convergence when the parameter vector approaches the maximizer. it is 
probably best to use several criteria simultaneously, such as the proportional change 
in both the function and the parameters. belsley (1980) discusses a number of possible 
stopping rules. One that has proved useful and is immune to the scaling problem is to 
base convergence on g′H-1g.

Multiple Solutions it is possible for a function to have several local extrema. it is 
difficult to know a priori whether this is true of the one at hand. but if the function is 
not globally concave, then it may be a good idea to attempt to maximize it from several 
starting points to ensure that the maximum obtained is the global one. ideally, a starting 
value near the optimum can facilitate matters; in some settings, this can be obtained 
by using a consistent estimate of the parameter for the starting point. the method of 
moments, if available, is sometimes a convenient device for doing so.

No Solution Finally, it should be noted that in a nonlinear setting the iterative algorithm 
can break down, even in the absence of constraints, for at least two reasons. the first 
possibility is that the problem being solved may be so numerically complex as to defy 
solution. the second possibility, which is often neglected, is that the proposed model 
may simply be inappropriate for the data. in a linear setting, a low R2 or some other 
diagnostic test may suggest that the model and data are mismatched, but as long as the 
full rank condition is met by the regressor matrix, a linear regression can always be 

27Hall (1982, p. 147).
28See, for example, Joreskog and gruvaeus (1970), Powell (1964), Quandt (1983), and Hall (1982).
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computed. Nonlinear models are not so forgiving. the failure of an iterative algorithm 
to find a maximum of the criterion function may be a warning that the model is not 
appropriate for this body of data.

E.3.7  THE EM ALGORITHM

the latent class model can be characterized as a missing data model. Consider the 
mixture model we used for DocVis in Chapter 14, which we will now generalize to 
allow more than two classes:

f(yit � xit, classi = j) = uit, j(1 - uit, j)
yit, uit, j = 1/(1 + lit, j), lit, j = exp(xit

=Bj), yit = 0, 1, c.

Prob(classi = j � zi) =
exp(zi

=aj)

a j
j = 1exp(zi

=aj)
, j = 1,2, c, J.

With all parts incorporated, the log-likelihood for this latent class model is

 ln LM = a
n

i = 1
ln Li, M

 = a
n

i = 1
lnc a

J

j = 1

exp(zi
=Aj)

a J
m = 1exp(zi

=Am)
q
Ti

t = 1
¢ 1

1 + exp(xit
=Bj)

≤ ¢ exp(xit
=Bj)

1 + exp(xit
=Bj)

≤yit s . (E-28)

Suppose the actual class memberships were known (i.e., observed). then, the 
class probabilities in ln LM would be unnecessary. the appropriate complete data log-
likelihood for this case would be

 ln LC = a
n

i = 1
ln Li,C

 = a
n

i = 1
lnb a

J

j = 1
Dijq

Ti

t = 1
¢ 1

1 + exp(xit
=Bj)

≤ ¢ exp(xit
=Bj)

1 + exp(xit
=Bj)

≤yit r , (E-29)

where Dij is an observed dummy variable that equals one if individual i is from class j, 
and zero otherwise. With this specification, the log-likelihood breaks into J separate 
log-likelihoods, one for each (now known) class. the maximum likelihood estimates of 
B1, c, BJ would be obtained simply by separating the sample into the respective 
subgroups and estimating the appropriate model for each group using maximum 
likelihood. the method we have used to estimate the parameters of the full model is to 
replace the Dij variables with their unconditional espectations, Prob(classi = j � zi), then 
maximize the resulting log-likelihood function. this is the essential logic of the EM 
(expectation–maximization) algorithm29; however, the method uses the conditional 
(posterior) class probabilities instead of the unconditional probabilities. the iterative 
steps of the eM algorithm are

(e step)  Form the expectation of the missing data log-likelihood, conditional on 
the previous parameter estimates and the data in the sample;

29Dempster et al. (1977).
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(M step)  Maximize the expected log-likelihood function. then either return to the 
e step or exit if the estimates have converged.

the eM algorithm can be used in a variety of settings.30 it has a particularly appealing 
form for estimating latent class models. the iterative steps for the latent class model are 
as follows:

(e step)  Form the conditional (posterior) class probabilities, pij � zi, based on the 
current estimates. these are based on the likelihood function.

(M step)  For each class, estimate the class-specific parameters by maximizing a 
weighted log-likelihood,

ln LM step, j = a
nc

i = 1
pij ln Li � class = j.

the parameters of the class probability model are also reestimated, as shown 
later, when there are variables in zi other than a constant term.

this amounts to a simple weighted estimation. For example, in the latent class linear 
regression model, the M step would amount to nothing more than weighted least 
squares. For nonlinear models such as the geometric model above, the M step involves 
maximizing a weighted log-likelihood function.

For the preceding geometric model, the precise steps are as follows: First, obtain 
starting values for B1, c, BJ, A1, c, AJ. recall, AJ = 0. then;

1. Form the contributions to the likelihood function using (e-28),

 Li = a
J

j = 1
pijq

Ti

t = 1
f(yit � xit, Bj, classi = j)

     = a
J

j = 1
Li � class = j.  (E-30)

2. Form the conditional probabilities, wij =
Li � class = j

a J
m = 1Li � class = m

. (E-31)

3. For each j, now maximize the weighted log likelihood functions (one at a time),

 ln Lj, M(Bj) = a
n

i = 1
wij ln q

Ti

t = 1
¢ 1

1 + exp(xit
=Bj)

≤ ¢ exp(xit
=Bj)

1 + exp(xit
=Bj)

≤yit

 (E-32)

4. to update the Aj parameters, maximize the following log-likelihood function

 ln L(A1, c, AJ) = a
n

i = 1
a

J

j = 1
wij ln 

exp(zi
=Aj)

a J
j = 1exp(zi

=Aj)
, AJ = 0. (E-33)

30See Mclachlan and Krishnan (1997).
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Step 4 defines a multinomial logit model (with “grouped”) data. if the class probability 
model does not contain any variables in zi, other than a constant, then the solutions to 
this optimization will be

 pnj = a n
i = 1wij

a n
i = 1a J

j = 1wij

, then an j = ln 
pnj

pnJ
. (E-34)

(Note that this preserves the restriction an J = 0.) With these in hand, we return to steps 
1 and 2 to rebuild the weights, then perform steps 3 and 4. the process is iterated until 
the estimates of B1, c, BJ converge. Step 1 is constructed in a generic form. For a 
different model, it is necessary only to change the density that appears at the end of the 
expresssion in (e-32). For a cross section instead of a panel, the product term in step 1 
becomes simply the log of the single term.

the eM algorithm has an intuitive appeal in this (and other) settings. in practical 
terms, it is often found to be a very slow algorithm. it can take many iterations to 
converge. (the estimates in example 14.17 were computed using a gradient method, not 
the eM algorithm.) in its favor, the eM method is very stable. it has been shown that 
the algorithm always climbs uphill.31 the log-likelihood improves with each iteration. 
applications differ widely in the methods used to estimate latent class models. adding 
to the variety are the very many bayesian applications, none of which use either of the 
methods discussed here.

E.4 EXAMPLES

to illustrate the use of gradient methods, we consider some simple problems.

E.4.1  FUNCTION OF ONE PARAMETER

First, consider maximizing a function of a single variable, f(u) = ln(u) - 0.1u2. the 
function is shown in Figure e.4. the first and second derivatives are

 f′(u) =
1
u

- 0.2u,

 f″(u) =
-1
u2 - 0.2.

equating f′ to zero yields the solution u = 25 = 2.236. at the solution, f ″ = -0.4, so 
this solution is indeed a maximum. to demonstrate the use of an iterative method, we 
solve this problem using Newton’s method. Observe, first, that the second derivative is 
always negative for any admissible (positive) u.32 therefore, it should not matter where 
we start the iterations; we shall eventually find the maximum. For a single parameter, 
Newton’s method is

ut + 1 = ut - [ f t
=/f t

>].

31Dempster, laird, and rubin (1977).
32in this problem, an inequality restriction, u 7 0, is required. as is common, however, for our first attempt we 
shall neglect the constraint.
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FIGURE E.4  Function of One Variable Parameter.
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the sequence of values that results when 5 is used as the starting value is given in table 
e.1. the path of the iterations is also shown in the table.

E.4.2  FUNCTION OF TWO PARAMETERS: THE GAMMA DISTRIBUTION

For random sampling from the gamma distribution, the density is

f(yi, b, r) =
br

Γ(r)
 e-byi yi

r - 1.

the log-likelihood is ln L(b, r) = nr ln b - n ln Γ(r) - ba n
i = 1yi + (r - 1)a n

i = 1ln yi. 
(See Section 14.6.4 and example 13.5.) it is often convenient to scale the log-likelihood 
by the sample size. Suppose, as well, that we have a sample with y = 3 and ln y = 1. 
then the function to be maximized is F(b, r) = r ln b - ln Γ(r) - 3b + r - 1. the 
derivatives are

 
0F
0b

=
r

b
- 3,   

0F
0r

= ln b -
Γ′
Γ

+ 1 = ln b - Ψ(r) + 1,

 
02F

0b2 =
-r

b2 ,    
02F

0r2 =
-(ΓΓ″ - Γ′2)

Γ2 = -Ψ′(r),  
02F

0b 0r
=

1
b

.

Finding a good set of starting values is often a difficult problem. Here we choose three 
starting points somewhat arbitrarily: (r0, b0) = (4, 1), (8, 3), and (2, 7). the solution to 
the problem is (5.233, 1.7438). We used Newton’s method and DFP with a line search to 
maximize this function.33 For Newton’s method, l = 1. the results are shown in table e.2. 

33the one used is described in Joreskog and gruvaeus (1970).
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the two methods were essentially the same when starting from a good starting point 
(trial 1), but they differed substantially when starting from a poorer one (trial 2). Note 
that DFP and Newton approached the solution from different directions in trial 2. the 
third starting point shows the value of a line search. at this starting value, the Hessian is 
extremely large, and the second value for the parameter vector with Newton’s method is 
(-47.671, -233.35), at which point F cannot be computed and this method must be 
abandoned. beginning with H = I and using a line search, DFP reaches the point (6.663, 
2.027) at the first iteration, after which convergence occurs routinely in three more 
iterations. at the solution, the Hessian is [(-1.72038, 0.191153)′, (0.191153, -0.210579)′]. 
the diagonal elements of the Hessian are negative and its determinant is 0.32574, so it is 
negative definite. (the two characteristic roots are -1.7442 and -0.18675). therefore, 
this result is indeed the maximizer of the function.

E.4.3  A CONCENTRATED LOG-LIKELIHOOD FUNCTION

there is another way that the preceding problem might have been solved. the first 
of the necessary conditions implies that at the joint solution for (b, r), b will equal 
r/3. Suppose that we impose this requirement on the function we are maximizing. the 
concentrated (over b) log-likelihood function is then produced:

 Fc(r) = r ln(r/3) - ln Γ(r) - 3(r/3) + r - 1

 = r ln(r/3) - ln Γ(r) - 1.

Iteration U f f′ f″

0 5.00000 -0.890562 -0.800000 -0.240000
1 1.66667 0.233048 0.266667 -0.560000
2 2.14286 0.302956 0.030952 -0.417778
3 2.23404 0.304718 0.000811 -0.400363
4 2.23607 0.304719 0.0000004 -0.400000

TABLE E.1 Iterations for Newton’s Method

Trial 1 Trial 2 Trial 3

DFP Newton DFP Newton DFP Newton

Iteration R B R B R B R B R B R B

0 4.000 1.000 4.000 1.000 8.000 3.000 8.000 3.000 2.000 7.000 2.000 7.000
1 3.981 1.345 3.812 1.203 7.117 2.518 2.640 0.615 6.663 2.027 -47.7 -233.
2 4.005 1.324 4.795 1.577 7.144 2.372 3.203 0.931 6.195 2.075 — —
3 5.217 1.743 5.190 1.728 7.045 2.389 4.257 1.357 5.239 1.731 — —
4 5.233 1.744 5.231 1.744 5.114 1.710 5.011 1.656 5.251 1.754 — —
5 — — — — 5.239 1.747 5.219 1.740 5.233 1.744 — —
6 — — — — 5.233 1.744 5.233 1.744 — — — —

TABLE E.2 Iterative Solutions to Max Max(r, b)r ln b - ln �(r) - 3b + r - 1
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this function could be maximized by an iterative search or by a simple one-dimensional 
grid search. Figure e.5 shows the behavior of the function. as expected, the maximum 
occurs at r = 5.233. the value of b is found as 5.23/3 = 1.743.

the concentrated log-likelihood is a useful device in many problems. (See Section 
14.12 for an application.) Note the interpretation of the function plotted in Figure e.5. 
the original function of r and b is a surface in three dimensions. the curve in Figure 
e.5 is a projection of that function; it is a plot of the function values above the line 
b = r/3. by virtue of the first-order condition, we know that one of these points will 
be the maximizer of the function. therefore, we may restrict our search for the overall 
maximum of F(b, r) to the points on this line.

A P P E N D I X  F

§
Data SetS USeD iN aPPliCatiONS

the following data sets are used in the examples and applications in the text. With the 
exception of the bertschek and lechner file (F15.1), the data sets themselves can be 
downloaded from the Web site for this text, http://people.stern.nyu.edu/wgreene/text/
econometricanalysis.htm. in a few cases, the Urls to the publicly accessible archives will 
be indicated. the points in the text where the data are used for examples or suggested 
exercises are noted as “Uses.” examples are denoted “echapter.example” (as in e1.2); 

FIGURE E.5  Concentrated Log-Likelihood.
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Sections are denoted “Schapter.section” (as in S20.9.2); end of chapter applications 
are denoted “achapter.application” (as in a4.1); end of chapter problems are denoted 
“Pchapter.exercise” (as in P3.12).

TABLE F1.1 Consumption and Income, 10 Yearly Observations, 2000–2009

Source: Economic Report of the President, 2012, Council of economic advisors
Uses: e1.2, e16.3

TABLE F2.1 Consumption and Income, 11 Yearly Observations, 1940–1950

Source: Economic Report of the President, U.S. government Printing Office, Washington, D.C., 1983
Uses: e2.1, e3.2, e16.3

TABLE F2.2 The U.S. Gasoline Market, 52 Yearly Observations 1953–2004

Source: the data were compiled by Professor Chris bell, Department of economics, University of North 
Carolina, asheville. Sources: www.bea.gov and www.bls.gov.
Uses: e2.3, e4.2, e4.7, e4.8, e5.3, e6.20, e15.4, e20.2, e20.7, S20.9.2, a4.1,a5.3, a7.5, a7.6

TABLE F3.1 Investment, 15 Yearly Observations, 2000-2014.

Source: Economic Report of the President, U.S. government Printing Office, Washington, D.C., 2016
Uses: e3.1, e3.3, S3.2.2, e3.13

TABLE F3.2 Koop and Tobias Labor Market Experience, 17,919 Observations

Source: Koop and tobias (2004): http://www.econ.queensu.ca/jae/2004-v19.7/koop-tobias/
Uses: e15.16, e16.6, a3.1, a5.1, a6.1, a6.2, a11.1

TABLE F4.1 Auction Data for Monet Paintings, 430 Observations

Source: author
Uses: e4.3, e4.5, e4.10, e5.1, e5.8, e6.2, S4.7.6, S4.9.5, exercise 4.17

TABLE F4.2 The Longley Data, 15 Yearly Observations, 1947–1962

Source: longley (1967)
Uses: e4.11, e21.1

TABLE F4.3 Movie Buzz Data, 62 Observations

Source: author
Uses: e4.12, e6.4, S6.2.6

TABLE F4.4 Cost Function, 158 1970 Cross-Section Firm Level Observations

Source: Christensen and greene (1976)
Uses: e7.13, a4.2, a5.2, a7.4, a10.2, a19.4
Note: the file contains 158 observations. Christensen and greene used the first 123. the extras are the holding 
companies. Use only the first 123 observations to replicate Christensen and greene.

TABLE F4.5 Filipelli Data, 82 Observations

Source: NiSt/Strd website (www.itl.nist.gov/div898/strd/lls/data/Filip.shtml)
Uses: a4.3

Z03_GREE1366_08_SE_APP.indd   2 3/14/17   9:26 PM



TABLE F5.1 Labor Supply Data , 753 Observations

Source: Mroz (1987): 1976 Panel Study of income Dynamics
Uses: e5.2, e5.4, e6.1, e17.1, e17.15, e17.20, e19.6, e19.11, a19.2, a19.3

TABLE F5.2 Macroeconomics Data Set, Quarterly, 1950I to 2000IV

Source: Department of Commerce, bea Web site, and www.economagic.com
Uses: e5.3, e5.4, e5.6, e5.7, e7.4, e7.9, e16.3, e8.13, e20.1, e20.3, e20.4, e20.5, e20.6, e21.1, e21.2, e21.3, e21.4, 
e21.5, e21.8, a5.4,a10.4, a20.1 a20.2, a20.3, a21.1, a21.2, a21.3, S21.2.5

TABLE F5.3 Production for SIC 33: Primary Metals, 27 Statewide Observations

Source: Hildebrand and liu (1957)
Uses: e5.5
Note: Data are per establishment, labor is a measure of labor input, and capital is the gross value of plant and 
equipment. a scale factor used to normalize the capital figure in the original study has been omitted. Further 
details on construction of the data are given in aigner et al. (1977).

TABLE F6.1 Costs for U.S. Airlines, 90 Total Observations on 6 Firms for 1970–1984

Source: Christensen associates of Madison, Wisconsin
Uses: e6.6, a9.2, a11.3, e14.10
Note: these data are a subset of a larger data set provided to the author by Professor Moshe Kim.

TABLE F6.2 Cost Function, 145 U.S. Electricity Producers, Nerlove’s 1955 Data

Sources: Nerlove (1960) and Christensen and greene (1976)
Uses: e6.17, e10.2, a10.2, a10.5, a11.3,
Note: the data file contains several extra observations that are aggregates of commonly owned firms. Use 
only the first 145 for analysis.

TABLE F6.3 World Health Organization Panel Data, 840 Total Observations

Sources: the World Health Organization [evans et al. (2000) and www.who.int]
Uses: e6.22, e11.6
Note: Variables marked * were updated with more recent sources in greene (2004a). Missing values for some 
of the variables in this data set are filled by using fitted values from a linear regression.

TABLE F6.4 Solow’s Technological Change Data, 41 Yearly Observations, 1909–1949

Source: Solow (1957, p. 314). Several variables are omitted
Use: a6.3

TABLE F6.5 Baseball Data, Unbalanced Panel, 31 Teams, 468 Obserevations

Source: author
Uses: e6.5

TABLE F7.1  German Health Care Data, Unbalanced Panel, 7,293 Individuals, 27,326 
Observations

Source: riphahn et al. (2003); http://qed.econ.queensu.ca/jae/2003-v18.4/riphahn-wambach-million/
Uses: e4.4, e10.8, e11.16, e11.20, e13.7, e14.12, e14.13, e14.18, e14.23, e14.24, e17.6, e17.7, e17.8, e17.9, e17.12, 
e17.14, e17.19, e17.22, e17.24, e17.27, e17.28, e17.29, e18.12, e18.16, e18.19, e18.21, e19.13, a10.6, a14.1, a14.2, 
a18.3, a18.4,
Notes: in the applications in the text, the following additional variables are used:
NUMOBS = Number of observations for this person. repeated in each row of data.
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NEWHSAT = HSAT; 40 observations on HSat originally recorded between 6 and 7 were changed to 7. 
Frequencies are 1 = 1525, 2 = 1079, 3 = 825, 4 = 926, 5 = 1051, 6 = 1000, 7 = 887.

TABLE F7.2 Statewide Data on Transportation Equipment Manufacturing, 25 Observations

Source: Zellner and revankar (1970, p. 249)
Uses: e7.10, a7.1
Note: “Value added,” “Capital,” and “labor” in millions of 1957 dollars. Data used in regression examples are 
per establishment. totals are used for the stochastic frontier application in Chapter 19.

TABLE F7.3 Expenditure and Default Data, 13,444 Observations

Source: greene (1992)
Uses: e7.12, e7.14, e9.1, e17.17, e17.21, e18.17, e18.20

TABLE F8.1 Cornwell and Rupert, Labor Market Data, 595 Individuals, 7 years

Source: See Cornwell and rupert (1988)
Location: Web site for baltagi (2005), http://www.wiley.com/legacy/wileychi/baltagi/supp/WageS.xls
Uses: e4.6, e6.3, e6.7, e6.15, e6.16, e6.21, e6.23, e8.5, e8.11, e11.4, e11.10, e11.12, e14.15, e15.6, e15.12, 
a8.1, a15.2, S8.4.3

TABLE F8.2  LaLonde (1986) Earnings Data, 2,490 Control Observations and 185 Treat-
ment Observations

Source: lalonde (1986): Data are at http://users.nber.org/~rdehejia/data/nswdata2.html
Use: e8.10
Note: We scaled all earnings variables by 10,000 before beginning the analysis.

TABLE F9.2 Baltagi and Griffin Gasoline Data, 18 OECD Countries, 19 Years

Source: See baltagi and griffin (1983) and baltagi (2005) http://www.wiley.com/legacy/wileychi/baltagi/supp/
gasoline.dat
Uses: e9.3, e14.11

TABLE F10.1 Munnell Productivity Data, 48 Continental U.S. States, 17 years,1970–1986

Sources: Munnell (1990) and baltagi (2005) http://www.wiley.com/legacy/wileychi/baltagi/supp/PrODUC.prn
Uses: examples e10.1, e11.19, e11.22, e14.16, e15.13, e15.15

TABLE F10.2 Manufacturing Costs, U.S. Economy, 25 Yearly Observations, 1947–1971

Source: berndt andWood (1975)
Use: e10.3

TABLE F10.3 Klein’s Model I, 22 Yearly Observations, 1920–1941

Source: Klein (1950)
Use: e10.9

TABLE F10.4  Grunfeld Investment Data, 200 Yearly Observations on 10 Firms for 
1935–1954

Sources: grunfeld (1958) and boot and deWitt (1960)
Uses: e14.14, a10.2, a10.3, a11.2
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TABLE F13.1 Dahlberg and Johanssen Expenditure Data, 265 Municipalities, 9 Years

Location: http://qed.econ.queensu.ca/jae/2000-v15.4/dahlberg-johansson/dj-data.zip
use: e13.10

TABLE F14.1 Program Effectiveness, 32 Cross-Section Observations

Source: Spector and Mazzeo (1980)
Uses: e14.19, e14.20, e14.21, e16.6, e17.10, e17.11, S16.6

TABLE F14.2 Spanish Dairy Production Data, Balanced Panel, 6 years, 247 farms

Source: author
Uses: e14.6, e14.7, e14.8, e14.9, e19.4

TABLE F15.1  Bertschek and Lechner Binary Choice Data, Balanced Panel, 5 years, 
1,270 firms

Source: bertcshek and lechner (1998) (these data are proprietary and may not be distributed.)
Uses: e15.17, e17.16, e17.36

TABLE F17.1  Burnett Analysis of Liberal Arts College Gender Economics Courses, 132 
Observations

Source: burnett (1997). Data provided by the author
Use: e17.35

TABLE F17.2 Fair, Redbook Survey on Extramarital Affairs, 6,366 Observations

Source: Fair (1978), data provided by the author.
Uses: e19.6 a17.1, e18.1, e18.2

TABLE F18.1 Fair’s (1977) Extramarital Affairs Data, 601 Cross-Section Observations

Source: Fair (1977): http://fairmodel.econ.yale.edu/rayfair/pdf/1978aDat.ZiP
Uses: e18.1, e18.18, e19.6, S18.4.6, a18.1, a18.2, a19.1
Note: Several variables not used are denoted X1, . . . , X5.

TABLE F18.2  Data Used to Study Travel Mode Choice, 840 Observations, on 4 Modes for 
210 Individuals

Source: greene and Hensher (1997)
Uses: e18.3, e18.7, a18.7,

TABLE F18.3 Ship Accidents, 40 Observations, 5 Types, 4 Vintages, and 2 Service Periods

Source: McCullagh and Nelder (1983)
Use: a18.5

TABLE F18.4  California Utility Stated Choice Experiment Data, 4,308 Choices, 361 
Individuals

Source: Kenneth train
Uses: e18.8
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TABLE F19.1  Filippini, Farsi, Greene, Swiss Railroads Data, Unalanced Panel 50 Firms, 
605 Observations

Source: authors
Use: e19.3

TABLE F19.2 Strike Duration Data, 63 Observations in 9 Years, 1968–1976

Source: Kennan (1985)
Use: e19.15

TABLE F20.1 Bollerslev and Ghysels Exchange Rate Data, 1974 Daily Observations

Source: bollerslev (1986)
Uses: e20.8, e20.9

TABLE FC.1 Observations on Income and Education, 20 Observations

Source: Data are artificial
Uses: e6.18, eC.1, eC.2, S14.6.4
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