
Writing Scripts in Gretl

Working with scripts
So far we have done several exercises in gretl by clicking the menu. This mode of working is easy
and intuitive, but not productive when you want to complete some complicated operations which
are time consuming and may include repetitions, and impossible to record what you have done.
Here we introduce the scripting mode, e.g., writing commands into a program. The resulting
program is also called a script or source file, with which you can save the process of your analysis
instead of results. This enables you to review and revise your analysis, and helps in the
communication between collaborators.

Open, edit, and save a script file

To start working with scripts, we need to open a new blank script file. This is done by choosing

> File > Script files > New script > gretl script

A new editor window appears, and you can edit (type something) and save by clicking the third
icon on the menu bar. The default location of gretl scripts is the working directory, which by
default is set as

…/user/gretl/

where user is your username of the OS. You can save your scripts elsewhere, as well as change
the default working directory into any location by choosing

> File > Working directory…

Sample scripts

There are many built-in sample scripts in gretl for study purpose. You can find them from

> File > Script files > Practice file…

For example, the file “ps2-1” under “Ranamathan” contains the following commands:

PS2.1 using DATA2-1, illustrating frequency distributions, Section 2.1
open data2-1
help freq
Because SHAZAM and gretl have different command structures, the outputs
don't correspond exactly
freq vsat
freq msat

Colors are automatically assigned. Lines starting with a # is usually called comments, which are
not executable. With comment lines you can write explanations about the program for the ones
who may read including yourself. Other lines are executable, where words in boldface are
commands. The purpose of this sample program is obvious.

You can execute the entire program by clicking the third icon on the menu bar. To run specific
lines, you can select them with mouse and right-click, then choose “Run” (in your own program
this appears as “Execute region”).

What can we do?

In scripting mode we can do almost everything that can be done from the menu, and even more.
Though it is free to write your own program, the basic structure of a program may include the
following building blocks.

Preamble Special settings of this program.

The programing language used in gretl is called hansl. The “Hansl primer” from the Help menu
provides a very nice introduction. You are strongly recommended to learn this material by typing
down every example in it.

Exercise. Type the following program into a script file and execute line-wise. Learn the
commands in the program with Command reference in the Help menu.

Import built-in data file "data3-1"
open data3-1

Show descriptive statistics
summary price sqft

Draw a scatter plot of price against sqft
gnuplot price sqft --output=display

Run regression of price on sqft with a constant term
ols price const sqft

Exercise. Try the following script and think about why it is written in this way. Use command
reference to see the meaning of meantest.

one sample t-test using two sample t-test with unequal variances
nulldata 20
series X = seq(1,20)
series Y = 0
meantest X Y --unequal-vars
series Z = 8
meantest X Z --unequal-vars

Programming
Programming is the logic and art of writing a program. For a high level programming language
such as hansl (or Python, R, etc.), we need at least to know how to save values into memory (data
type), how to structure operations (control flow), and how to define new commands (user-written
functions). Here we introduce the first two.

Basic data types

The most basic data type in gretl are series and scalar. A series is a variable, e.g., a set of
observations in a sample, whereas a scalar is a single value. Suppose we have imported the data
file “data3-1”. We can create a new variable named lsqft defined as the log of sqft. This can
be done by

Data import Reading data from a file or a database.

Data manipulation Data cleaning, data transformation, defining new variables, etc.

Descriptive statistics Summary statistics, plots, etc.

Main analysis Model fitting, testing, prediction, etc.

Representation of results Tabulation, graphing, etc.

Export Save important results into separate files.

series lsqft = sqft^2

The following script save the sample mean of price into mprice.

scalar mprice = mean(price)

Here, mean() is a function. The difference between a command and a function is that a function
takes input variables but a command does not. More functions can be found from the Function
reference in the Help menu.

A list is a set of series, and a string saves a sentence of natural languages such as English
enclosed by double quotes “”.

list X = const sqft
ols price X
string greeting = “Hello, world!”
print greeting

The if statement — conditional executions

Knowing commands and functions is not enough for writing good programs. In addition, you need
to know how to control the flow of executions in order to make complicated calculations. The if
statement makes it possible to execute different commands in different situations. For example,
suppose you have a variable “height” indicating the height of students, and a variable “sex”
indication the sex of students. You know that there is a common measurement error such that the
true value of height for male students should be the current observation plus 1, and the true value
for female students should be the current observation minus 2. In order to correct this error, for
each student, you can do the followings.

	 if [this student is a male]
 do [trueheight = height + 1]
 else
 do [trueheight = height - 2]
 end

Note that the above lines are pseudo-codes. In gretl, the general form of if statement is

if condition1
 commands1
elif condition2
 commands2
else
 commands3
endif

The conditions in the if statement need to be Boolean operations (intuitively, questions that
can be answered with yes or no). The elif and else parts are optional. The pseudo-codes
above can be written as follows (not executable yet).

if sex[i] == 1 # if male
 trueheight[i] = height[i] + 1
else # if female
 trueheight[i] = height[i] - 2
endif

The loop statement — repeated executions

In the above example the if statement need to be executed for each student (each observation
of the sample data). This kind of repetition is made possible by the loop statement. The idea here
is to do something for each member belonging to a set, where the set can be a series, a list, or
some other data types. There are many types of loops, for details you are refereed to Chapter 12
of the Gretl’s User’s Guide or Chapter 8 of A Hansl Primer. Here we introduce the index loop. The
general form of an index loop is

loop counter=min..max
 commands
endloop

The counter in this expression can be any word, and usually we use i, k, or j. The min and max

are integers which specify the range of counter. That is, the value of counter is initially set as
min, then increased by one in each step, until it reaches max, such as i=1..10.

Try the following script (for the above example) and understand how an index loop works.

nulldata 20
series height = randgen(N, 165, 10) # generate height from N(165, 10^2)
series sex = randgen(B, 0.5, 1) # generate sex from Binom(p=0.5, n=1), male=1
series trueheight

loop i=1..$nobs # $nobs returns the number of observations in the sample
 if sex[i] == 1 # if male
 trueheight[i] = height[i] + 1
 else # if female
 trueheight[i] = height[i] - 2
 endif
endloop

Practice
The Lucas numbers

The Lucas numbers are defined by the recurrence equation with and
. Do the followings in script mode.

1. Create a null dataset with 25 observations.

2. Create a variable “L” which stores the first 25 Lucas numbers.

3. Create another variable “ratio” which is defined by for with

.

Observe how the values of “ratio” changes as n increases.

Ln = Ln−1 + Ln−2 L1 = 1
L2 = 3

ratioi = Li/Li−1 i = 2,…, n
ratio1 = 1

A sample script

nulldata 25
series L
series ratio

L[1] = 1
L[2] = 3
ratio[1] = 1
ratio[2] = L[2] / L[1]
loop i=3..$nobs --quiet
 L[i] = L[i-1] + L[i-2]
 ratio[i] = L[i] / L[i-1]
endloop

	Working with scripts
	Programming
	Practice

