Statistics in Gretl

Descriptive Statistics

We have learned that summary statistics of variables can be shown from

> View > Summary statistics

or from

> Variable > Summary statistics

for a single variable. We can also draw various graphs to show properties of variables. Here we use the built-in dataset "greene5_1" (U.S. macro data, 1950-2000) to make a demonstration.

> View > Graph specified vars > Boxplots...

Inference

Gretl provides basic functionalities on statistical inference such as statistical tables, *p*-values, and computing test statistics. All of these are given in the Tool menu.

Find values from a statistical table

Suppose we want to find the two-sided 5% critical value of a Student *t* distribution with 4 d.f.. We can go to

> Tool > Statistical tables >

Click the t tab, specify the d.f. (4) and right-tail probability (0.025), then you will see the results.

gret1: critical values	gretl: critical values		
normal t chi-square F binomial poisson weibull DW			
df 4 right-tail probability 0.025	<pre>t(4) right-tail probability = 0.025 complementary probability = 0.975 two-tailed probability = 0.05 Critical value = 2.77645</pre>		
Close Close			

Exercise. Find the critical value of *N*(0,1) for a one-sided test with a 0.1% significance level.

Compute test statistics and find *p*-values

Suppose we are testing the null hypothesis $H_0: \mu = 15$ against $H_1: \mu \neq 15$ with a sample X_1, \ldots, X_n such that n = 25, $\overline{X} = 16.1$, $s_X^2 = 9$. We use a *t*-test where the test statistic can bu calculated from

> Tools > Test statistic calculator >

greti: test calculator								
mean variance	proportion	2 means	2 variances	2 proportions				
	sample mean	16.1						
	std. deviation	3						
	sample size	25						
	H0: mean =	15						
Assume standard deviation is population value								
${\boldsymbol{\mathscr{G}}}$ Show graph of sampling distribution								
🔀 Help			X Clo	se 🖉 OK				

Results are shown in the following form.

The test statistic is 1.83333 and the two-sided p-value is 0.07919. Here a Student *t* distribution with 24 d.f. is used. If we use a normal distribution instead, we need to find the p-value from

> Tools > P-value finder >

and specify parameters as follows (fill the value of test statistic into the "value" field)

) 🔵 🔵 gretl: p-value finder							
normal	t	chi-square	F	gamma	binomial	poisson	weibull	
mean 0								
std. deviation 1								
			value	1.8333	3			
					×	Close	¢₽́ОК	

Then we see the *p*-value becomes 0.0667535.

Exercise. Construct a 97% two-sided confidence interval for μ in the above problem using normal distribution.

Hint: you need to find the standard error of the sample mean as well as the 97% critical value.

If a dataset is loaded, it is also possible to calculate test statistics use variables from data. In this case, the sample statistics are automatically filled.