
Appendix R

R Supplement

R.1 First Things First

If you do not already have R, point your browser to the Comprehensive R Archive
Network (CRAN), http://cran.r-project.org/ and download and install it.
The installation includes help files and some user manuals. You can find helpful
tutorials by following CRAN’s link to Contributed Documentation. If you are a
novice, then RStudio (https://www.rstudio.com/) will make using R easier.

R.2 astsa

There is an R package for the text called astsa (Applied Statistical Time Series
Analysis), which was the name of the software distributed with the first and second
editions of Shumway and Stoffer (2000), and the original version, Shumway [183].
The package can be obtained from CRAN and its mirrors in the usual way. To
download and install astsa, start R and type
install.packages("astsa")

You will be asked to choose the closest CRAN mirror to you. As with all packages,
you have to load astsa before you use it by issuing the command
library(astsa)

All the data are loaded when the package is loaded. If you create a .First function
as follows,
.First <- function(){library(astsa)}

and save the workspace when you quit, astsa will be loaded at every start until you
change .First.

R is not consistent with help files across different operating systems. The best help
system is the html help, which can be started issuing the command help.start()
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and then following the Packages link to astsa. A useful command to see all the data
files available to you, including those loaded with astsa, is
data()

R.3 Getting Started

The convention throughout the text is that R code is in blue, output is purple and
comments are # green. Get comfortable, then start her up and try some simple tasks.
2+2 # addition
[1] 5

5*5 + 2 # multiplication and addition
[1] 27

5/5 - 3 # division and subtraction
[1] -2

log(exp(pi)) # log, exponential, pi
[1] 3.141593

sin(pi/2) # sinusoids
[1] 1

exp(1)^(-2) # power
[1] 0.1353353

sqrt(8) # square root
[1] 2.828427

1:5 # sequences
[1] 1 2 3 4 5

seq(1, 10, by=2) # sequences
[1] 1 3 5 7 9

rep(2, 3) # repeat 2 three times
[1] 2 2 2

Next, we’ll use assignment to make some objects:
x <- 1 + 2 # put 1 + 2 in object x
x = 1 + 2 # same as above with fewer keystrokes
1 + 2 -> x # same
x # view object x
[1] 3

(y = 9 * 3) # put 9 times 3 in y and view the result
[1] 27

(z = rnorm(5)) # put 5 standard normals into z and print z
[1] 0.96607946 1.98135811 -0.06064527 0.31028473 0.02046853

In general, <- and = are not the same; <- can be used anywhere, whereas the use of
= is restricted. But when they are the same, we prefer to code using the least number
of keystrokes.

It is worth pointing out R’s recycling rule for doing arithmetic. In the code below,
c() [concatenation] is used to create a vector. Note the use of the semicolon for
multiple commands on one line.
x = c(1, 2, 3, 4); y = 2*x; z = c(10, 20); w = c(8, 3, 2)
x * y # 1*2, 2*4, 3*6, 4*8
[1] 2 8 18 32

x + z # 1+10, 2+20, 3+10, 4+20
[1] 11 22 13 24

x + w # what happened here?
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[1] 9 5 5 12
Warning message:
In y + w : longer object length is not a multiple of
shorter object length

To work your objects, use the following commands:
ls() # list all objects
"dummy" "mydata" "x" "y" "z"

ls(pattern = "my") # list every object that contains "my"
"dummy" "mydata"

rm(dummy) # remove object "dummy"
rm(list=ls()) # remove almost everything (use with caution)
help.start() # html help and documentation
data() # list of available data sets
help(exp) # specific help (?exp is the same)
getwd() # get working directory
setwd() # change working directory
q() # end the session (keep reading)

When you quit, R will prompt you to save an image of your current workspace.
Answering yes will save the work you have done so far, and load it when you next
start R. We have never regretted selecting yes, but we have regretted answering no.
To create your own data set inside R, you can make a data vector as follows:
mydata = c(1,2,3,2,1)

Now you have an object called mydata that contains five elements. R calls these
objects vectors even though they have no dimensions (no rows, no columns); they do
have order and length:
mydata # display the data
[1] 1 2 3 2 1

mydata[3] # the third element
[1] 3

mydata[3:5] # elements three through five
[1] 3 2 1

mydata[-(1:2)] # everything except the first two elements
[1] 3 2 1

length(mydata) # number of elements
[1] 5

dim(mydata) # no dimensions
NULL

mydata = as.matrix(mydata) # make it a matrix
dim(mydata) # now it has dimensions
[1] 5 1

If you have an external data set, you can use scan or read.table (or some
variant) to input the data. For example, suppose you have an ascii (text) data file
called dummy.txt in your working directory, and the file looks like this:
1 2 3 2 1
9 0 2 1 0

(dummy = scan("dummy.txt") ) # scan and view it
Read 10 items
[1] 1 2 3 2 1 9 0 2 1 0

(dummy = read.table("dummy.txt") ) # read and view it
V1 V2 V3 V4 V5
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1 2 3 2 1
9 0 2 1 0

There is a difference between scan and read.table. The former produced a data
vector of 10 items while the latter produced a data framewith names V1 to V5 and two
observations per variate. In this case, if you want to list (or use) the second variate,
V2, you would use
dummy$V2
[1] 2 0

and so on. You might want to look at the help files ?scan and ?read.table now.
Data frames (?data.frame) are “used as the fundamental data structure by most of
R’s modeling software.” Notice that R gave the columns of dummy generic names, V1,
..., V5. You can provide your own names and then use the names to access the data
without the use of $ as above.
colnames(dummy) = c("Dog", "Cat", "Rat", "Pig", "Man")
attach(dummy)
Cat
[1] 2 0

Rat*(Pig - Man) # animal arithmetic
[1] 3 2

head(dummy) # view the first few lines of a data file
detach(dummy) # clean up (if desired)

R is case sensitive, thus cat and Cat are different. Also, cat is a reserved name
(?cat) in R, so using "cat" instead of "Cat" may cause problems later. You may also
include a header in the data file to avoid colnames(). For example, if you have a
comma separated values file dummy.csv that looks like this,
Dog,Cat,Rat,Pig,Man
1,2,3,2,1
9,0,2,1,0

then use the following command to read the data.
(dummy = read.csv("dummy.csv"))

Dog Cat Rat Pig Man
1 1 2 3 2 1
2 9 0 2 1 0

The default for .csv files is header=TRUE; type ?read.table for further information
on similar types of files.

Some commands that are used frequently to manipulate data are c() for concate-
nation, cbind() for column binding, and rbind() for row binding.
x = 1:3; y = 4:6
(u = c(x, y)) # an R vector

[1] 1 2 3 4 5 6
(u1 = cbind(x, y)) # a 3 by 2 matrix

x y
[1,] 1 4
[2,] 2 5
[3,] 3 6

(u2 = rbind(x ,y)) # a 2 by 3 matrix
[,1] [,2] [,3]

x 1 2 3
y 4 5 6
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Fig. R.1. Crazy example

For example, u1[,2] is the second column of the matrix u1, whereas u2[1,] is the
first row of u2.

Summary statistics are fairly easy to obtain. We will simulate 25 normals with
µ = 10 and σ = 4 and then perform some basic analyses. The first line of the code is
set.seed, which fixes the seed for the generation of pseudorandom numbers. Using
the same seed yields the same results; to expect anything else would be insanity.
set.seed(90210) # so you can reproduce these results
x = rnorm(25, 10, 4) # generate the data
c( mean(x), median(x), var(x), sd(x) ) # guess
[1] 9.473883 9.448511 13.926701 3.731850

c( min(x), max(x) ) # smallest and largest values
[1] 2.678173 17.326089

which.max(x) # index of the max (x[25] in this case)
[1] 25

summary(x) # a five number summary with six numbers
Min. 1st Qu. Median Mean 3rd Qu. Max.

2.678 7.824 9.449 9.474 11.180 17.330
boxplot(x); hist(x); stem(x) # visual summaries (not shown)

It can’t hurt to learn a little about programming in R because you will see some
of it along the way. Consider a simple program that we will call crazy to produce
a graph of a sequence of sample means of increasing sample sizes from a Cauchy
distribution with location parameter zero.
1 crazy <- function(num) {
2 x <- c()
3 for (n in 1:num) { x[n] <- mean(rcauchy(n)) }
4 plot(x, type="l", xlab="sample size", ylab="sample mean")
5 }

The first line creates the function crazy and gives it one argument, num, that is
the sample size that will end the sequence. Line 2 makes an empty vector, x, that
will be used to store the sample means. Line 3 generates n random Cauchy variates
[rcauchy(n)], finds the mean of those values, and puts the result into x[n], the n-th
value of x. The process is repeated in a “do loop” num times so that x[1] is the sample
mean from a sample of size one, x[2] is the sample mean from a sample of size two,
and so on, until finally, x[num] is the sample mean from a sample of size num. After
the do loop is complete, the fourth line generates a graphic (see Fig. R.1). The fifth
line closes the function. To use crazy ending with sample of size of 200, type
crazy(200)

and you will get a graphic that looks like Fig. R.1.
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Finally, a word of caution: TRUE and FALSE are reserved words, whereas T and F

are initially set to these. Get in the habit of using the words rather than the letters T
or F because you may get into trouble if you do something like
F = qf(p=.01, df1=3, df2=9)

so that F is no longer FALSE, but a quantile of the specified F-distribution.

R.4 Time Series Primer

In this section, we give a brief introduction on using R for time series.We assume that
astsa has been loaded. To create a time series object, use the command ts. Related
commands are as.ts to coerce an object to a time series and is.ts to test whether
an object is a time series. First, make a small data set:
(mydata = c(1,2,3,2,1) ) # make it and view it

[1] 1 2 3 2 1

Now make it a time series:
(mydata = as.ts(mydata) )

Time Series:
Start = 1
End = 5
Frequency = 1
[1] 1 2 3 2 1

Make it an annual time series that starts in 1950:
(mydata = ts(mydata, start=1950) )

Time Series:
Start = 1950
End = 1954
Frequency = 1
[1] 1 2 3 2 1

Now make it a quarterly time series that starts in 1950-III:
(mydata = ts(mydata, start=c(1950,3), frequency=4) )

Qtr1 Qtr2 Qtr3 Qtr4
1950 1 2
1951 3 2 1

time(mydata) # view the sampled times
Qtr1 Qtr2 Qtr3 Qtr4

1950 1950.50 1950.75
1951 1951.00 1951.25 1951.50

To use part of a time series object, use window():
(x = window(mydata, start=c(1951,1), end=c(1951,3) ))

Qtr1 Qtr2 Qtr3
1951 3 2 1

Next, we’ll look at lagging and differencing. First make a simple series, xt :
x = ts(1:5)

Now, column bind (cbind) lagged values of xt and you will notice that lag(x) is
forward lag, whereas lag(x, -1) is backward lag.
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cbind(x, lag(x), lag(x,-1))
x lag(x) lag(x, -1)

0 NA 1 NA
1 1 2 NA
2 2 3 1
3 3 4 2 <- in this row, for example, x is 3,
4 4 5 3 lag(x) is ahead at 4, and
5 5 NA 4 lag(x,-1) is behind at 2
6 NA NA 5

Compare cbind and ts.intersect:
ts.intersect(x, lag(x,1), lag(x,-1))

Time Series: Start = 2 End = 4 Frequency = 1
x lag(x, 1) lag(x, -1)

2 2 3 1
3 3 4 2
4 4 5 3

To difference a series, ∇xt = xt − xt−1, use
diff(x)

but note that
diff(x, 2)

is not second order differencing, it is xt − xt−2. For second order differencing, that is,
∇2xt , do one of these:
diff(diff(x))
diff(x, diff=2) # same thing

and so on for higher order differencing.
We will also make use of regression via lm(). First, suppose we want to fit a

simple linear regression, y = α + βx + ε . In R, the formula is written as y~x:
set.seed(1999)
x = rnorm(10)
y = x + rnorm(10)
summary(fit <- lm(y~x) )

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.2576 0.1892 1.362 0.2104
x 0.4577 0.2016 2.270 0.0529
--
Residual standard error: 0.58 on 8 degrees of freedom
Multiple R-squared: 0.3918, Adjusted R-squared: 0.3157
F-statistic: 5.153 on 1 and 8 DF, p-value: 0.05289

plot(x, y) # draw a scatterplot of the data (not shown)
abline(fit) # add the fitted line to the plot (not shown)

All sorts of information can be extracted from the lm object, which we called fit.
For example,
resid(fit) # will display the residuals (not shown)
fitted(fit) # will display the fitted values (not shown)
lm(y ~ 0 + x) # will exclude the intercept (not shown)

You have to be careful if you use lm() for lagged values of a time series. If
you use lm(), then what you have to do is align the series using ts.intersect.
Please read the warning Using time series in the lm() help file [help(lm)]. Here
is an example regressing astsa data, weekly cardiovascular mortality (cmort) on
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particulate pollution (part) at the present value and lagged four weeks (part4). First,
we create ded, which consists of the intersection of the three series:
ded = ts.intersect(cmort, part, part4=lag(part,-4))

Now the series are all aligned and the regression will work.
summary(fit <- lm(cmort~part+part4, data=ded, na.action=NULL) )
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 69.01020 1.37498 50.190 < 2e-16
part 0.15140 0.02898 5.225 2.56e-07
part4 0.26297 0.02899 9.071 < 2e-16
---
Residual standard error: 8.323 on 501 degrees of freedom
Multiple R-squared: 0.3091, Adjusted R-squared: 0.3063
F-statistic: 112.1 on 2 and 501 DF, p-value: < 2.2e-16

There was no need to rename lag(part,-4) to part4, it’s just an example of what
you can do.

An alternative to the above is the package dynlm, which has to be installed. After
the package is installed, the previous example may be run as follows:
library(dynlm) # load the package
fit = dynlm(cmort~part + L(part,4)) # no new data file needed
summary(fit)

The output is identical to the lm output. To fit another model, for example, add the
temperature series tempr, the advantage of dynlm is that a new data file does not have
to be created. We could just run
summary(dynlm(cmort~ tempr + part + L(part,4)) )

In Problem 2.1, you are asked to fit a regression model

xt = βt + α1Q1(t) + α2Q2(t) + α3Q3(t) + α4Q4(t) + wt

where xt is logged Johnson & Johnson quarterly earnings (n = 84), and Qi(t) is the
indicator of quarter i = 1, 2, 3, 4. The indicators can be made using factor.
trend = time(jj) - 1970 # helps to 'center' time
Q = factor(cycle(jj) ) # make (Q)uarter factors
reg = lm(log(jj)~0 + trend + Q, na.action=NULL) # no intercept
model.matrix(reg) # view the model design matrix

trend Q1 Q2 Q3 Q4
1 -10.00 1 0 0 0
2 -9.75 0 1 0 0
3 -9.50 0 0 1 0
4 -9.25 0 0 0 1
. . . . . .
. . . . . .

summary(reg) # view the results (not shown)

The workhorse for ARIMA simulations is arima.sim. Here are some examples;
no output is shown here so you’re on your own.
x = arima.sim(list(order=c(1,0,0), ar=.9), n=100) + 50 # AR(1) w/mean 50
x = arima.sim(list(order=c(2,0,0), ar=c(1,-.9)), n=100) # AR(2)
x = arima.sim(list(order=c(1,1,1), ar=.9 ,ma=-.5), n=200) # ARIMA(1,1,1)
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An easy way to fit ARIMAmodels is to use sarima from astsa. The script is used in
Chap. 3 and is introduced in Sect. 3.7.

R.4.1 Graphics

We introduced some graphics without saying much about it. Many people use the
graphics package ggplot2, but for quick and easy graphing of time series, the R base
graphics does fine and is what we discuss here. As seen in Chap. 1, a time series may
be plotted in a few lines, such as
plot(speech)

in Example 1.3, or the multifigure plot
plot.ts(cbind(soi, rec) )

which we made little fancier in Example 1.5:
par(mfrow = c(2,1))
plot(soi, ylab='', xlab='', main='Southern Oscillation Index')
plot(rec, ylab='', xlab='', main='Recruitment')

But, if you compare the results of the above to what is displayed in the text, there
is a slight difference because we improved the aesthetics by adding a grid and cutting
down on the margins. This is how we actually produced Fig. 1.3:
1 dev.new(width=7, height=4) # default is 7 x 7 inches
2 par(mar=c(3,3,1,1), mgp=c(1.6,.6,0) ) # change the margins (?par)
3 plot(speech, type='n')
4 grid(lty=1, col=gray(.9)); lines(speech)

In line 1, the dimensions are in inches. Line 2 adjusts the margins; see help(par) for
a complete list of settings. In line 3, the type=’n’means to set up the graph, but don’t
actually plot anything yet. Line 4 adds a grid and then plots the lines. The reason for
using type=’n’ is to avoid having the grid lines on top of the data plot. You can print
the graphic directly to a pdf, for example, by replacing line 1 with something like
pdf(file="speech.pdf", width=7, height=4)

but you have to turn the device off to complete the file save:
dev.off()

Here is the code we used to plot two series individually in Fig. 1.5:
dev.new(width=7, height=6)
par(mfrow = c(2,1), mar=c(2,2,1,0)+.5, mgp=c(1.6,.6,0) )
plot(soi, ylab='', xlab='', main='Southern Oscillation Index', type='n')
grid(lty=1, col=gray(.9)); lines(soi)
plot(rec, ylab='', main='Recruitment', type='n')
grid(lty=1, col=gray(.9)); lines(rec)

For plotting many time series, plot.ts and ts.plot are available. If the series
are all on the same scale, it might be useful to do the following:
ts.plot(cmort, tempr, part, col=1:3)
legend('topright', legend=c('M','T','P'), lty=1, col=1:3)

This produces a plot of all three series on the same axes with different colors, and
then adds a legend. We are not restricted to using basic colors; an internet search on
‘R colors’ is helpful. The following code gives separate plots of each different series
(with a limit of 10):



542 Appendix R: R Supplement

0
50

100
150
200

1750 1800 1850 1900 1950

0

50

100

150

200

Time

Su
ns

po
t N

um
be

rs

Fig. R.2. The sunspot numbers plotted in different-sized boxes, demonstrating that the dimen-
sions of the graphic matters when displaying time series data

plot.ts(cbind(cmort, tempr, part) )
plot.ts(eqexp) # you will get a warning
plot.ts(eqexp[,9:16], main='Explosions') # but this works

Finally, we mention that size matters when plotting time series. Figure R.2 shows
the sunspot numbers discussed in Problem 4.9 plotted with varying dimension size
as follows.
layout(matrix(c(1:2, 1:2), ncol=2), height=c(.2,.8))
par(mar=c(.2,3.5,0,.5), oma=c(3.5,0,.5,0), mgp=c(2,.6,0), tcl=-.3, las=1)
plot(sunspotz, type='n', xaxt='no', ylab='')

grid(lty=1, col=gray(.9))
lines(sunspotz)

plot(sunspotz, type='n', ylab='')
grid(lty=1, col=gray(.9))
lines(sunspotz)

title(xlab="Time", outer=TRUE, cex.lab=1.2)
mtext(side=2, "Sunspot Numbers", line=2, las=0, adj=.75)
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The result is shown in Fig. R.2. The top plot is wide and narrow, revealing the fact that
the series rises quickly ↑ and falls slowly↘. The bottom plot, which is more square,
obscures this fact. You will notice that in the main part of the text, we never plotted a
series in a square box. The ideal shape for plotting time series, in most instances, is
when the time axis is much wider than the value axis.


