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Options
• Option 

the right to sell/buy the underlying asset by a certain date for 
a certain price.


• Expiration (maturity) date, strike price.


• Call option — the right to buy; 
Put option — the right to sell.


• American option — can be exercised at any time up to the 
expiration date; 
European option — can be exercised only on the expiration 
date.



Option profits
• Underlying asset price at maturity ST ; strike price K.

K

ST

ST — K

A European call option: buy at K and and sell at ST.  
The profit is then (ST - K) minus the option price.



• Underlying asset price at maturity ST ; strike price K.

Option profits

K

ST

K — ST

A European call option: do not exercise.  
The profit is 0 minus the option price.



Option positions

• Long position — buy the option; 
Short position — sell the option.


• Four positions:

1. a long position in a call option;

2. a long position in a put option;

3. a short position in a call option;

4. a short position in a put option. 



payoff from a long position in a European call option is

maxðST " K; 0Þ

This reflects the fact that the option will be exercised if ST > K and will not be exercised
if ST 6 K. The payoff to the holder of a short position in the European call option is

" maxðST " K; 0Þ ¼ minðK " ST ; 0Þ

The payoff to the holder of a long position in a European put option is

maxðK " ST ; 0Þ

and the payoff from a short position in a European put option is

" maxðK " ST ; 0Þ ¼ minðST " K; 0Þ

Figure 10.5 illustrates these payoffs.

10.3 UNDERLYING ASSETS

This section provides a first look at how options on stocks, currencies, stock indices,
and futures are traded on exchanges.
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Stock option pricing
• Assumptions 

 
 

• Notation

Amount of Future Dividends

Dividends have the effect of reducing the stock price on the ex-dividend date. This is
bad news for the value of call options and good news for the value of put options.
Consider a dividend whose ex-dividend date is during the life of an option. The value of
the option is negatively related to the size of the dividend if the option is a call and
positively related to the size of the dividend if the option is a put.

11.2 ASSUMPTIONS AND NOTATION

In this chapter, we will make assumptions similar to those made when deriving forward
and futures prices in Chapter 5. We assume that there are some market participants,
such as large investment banks, for which the following statements are true:

1. There are no transaction costs.

2. All trading profits (net of trading losses) are subject to the same tax rate.

3. Borrowing and lending are possible at the risk-free interest rate.

We assume that these market participants are prepared to take advantage of arbitrage
opportunities as they arise. As discussed in Chapters 1 and 5, this means that any
available arbitrage opportunities disappear very quickly. For the purposes of our
analysis, it is therefore reasonable to assume that there are no arbitrage opportunities.

We will use the following notation:

S0 : Current stock price

K : Strike price of option

T : Time to expiration of option

ST : Stock price on the expiration date

r : Continuously compounded risk-free rate of interest for an investment maturing
in time T

C : Value of American call option to buy one share

P : Value of American put option to sell one share

c : Value of European call option to buy one share

p : Value of European put option to sell one share

It should be noted that r is the nominal risk-free rate of interest, not the real risk-free
rate of interest.2 The proxies used by the market for the risk-free rate of interest were
discussed in Section 4.3. A simple arbitrage argument suggests that r > 0 and this is the
assumption we make in deriving results in this chapter.3 However, during some periods
the monetary policies of governments have led to interest rates being negative in some
currencies such as the euro, Swiss franc, and Japanese yen. Problem 11.22 considers the
impact of negative interest rates on the results in this chapter.

2 The real rate of interest is the rate of interest earned after adjustment for the effects of inflation. For
example, if the nominal rate of interest is 3% and inflation is 2%, the real rate of interest is approximately
1%.
3 If r is not greater than zero, there is no advantage to investing spare funds over keeping the funds as
(uninvested) cash. To put this another way, why would anyone buy a bond providing a zero or negative yield?
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Risk-neutral evaluation 
• We assume a risk-neutral world such that

Irrelevance of the Stock’s Expected Return

The option pricing formula in equation (13.2) does not involve the probabilities of the
stock price moving up or down. For example, we get the same option price when the
probability of an upward movement is 0.5 as we do when it is 0.9. This is surprising and
seems counterintuitive. It is natural to assume that, as the probability of an upward
movement in the stock price increases, the value of a call option on the stock increases
and the value of a put option on the stock decreases. This is not the case.

The key reason is that we are not valuing the option in absolute terms. We are
calculating its value in terms of the price of the underlying stock. The probabilities of
future up or down movements are already incorporated into the stock price: we do not
need to take them into account again when valuing the option in terms of the stock price.

13.2 RISK-NEUTRAL VALUATION

We are now in a position to introduce a very important principle in the pricing of
derivatives known as risk-neutral valuation. This states that, when valuing a derivative,
we can make the assumption that investors are risk-neutral. This assumption means
investors do not increase the expected return they require from an investment to
compensate for increased risk. A world where investors are risk-neutral is referred to
as a risk-neutral world. The world we live in is, of course, not a risk-neutral world. The
higher the risks investors take, the higher the expected returns they require. However, it
turns out that assuming a risk-neutral world gives us the right option price for the
world we live in, as well as for a risk-neutral world. Almost miraculously, it finesses the
problem that we know hardly anything about the risk aversion of the buyers and sellers
of options.

Risk-neutral valuation seems a surprising result when it is first encountered. Options
are risky investments. Should not a person’s risk preferences affect how they are priced?
The answer is that, when we are pricing an option in terms of the price of the
underlying stock, risk preferences are unimportant. As investors become more risk-
averse, stock prices decline, but the formulas relating option prices to stock prices
remain the same.

A risk-neutral world has two features that simplify the pricing of derivatives:

1. The expected return on a stock (or any other investment) is the risk-free rate.

2. The discount rate used for the expected payoff on an option (or any other
instrument) is the risk-free rate.

Returning to equation (13.2), the parameter p should be interpreted as the probability
of an up movement in a risk-neutral world, so that 1! p is the probability of a down
movement in this world. (We assume u > erT , so that 0 < p < 1.) The expression

pfu þ ð1! pÞfd

is the expected future payoff from the option in a risk-neutral world and equation (13.2)
states that the value of the option today is its expected future payoff in a risk-neutral
world discounted at the risk-free rate. This is an application of risk-neutral valuation.
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Models of stock price 
Binomial trees

The value of the stock price today is known to be $20. Suppose the option price is
denoted by f . The value of the portfolio today is

20! 0:25" f ¼ 5" f
It follows that

5" f ¼ 4:455
or

f ¼ 0:545

This shows that, in the absence of arbitrage opportunities, the current value of the
option must be 0.545. If the value of the option were more than 0.545, the portfolio
would cost less than 4.455 to set up and would earn more than the risk-free rate. If the
value of the option were less than 0.545, shorting the portfolio would provide a way of
borrowing money at less than the risk-free rate.

Trading 0.25 shares is, of course, not possible. However, the argument is the same if
we imagine selling 400 options and buying 100 shares. In general, it is necessary to buy
! shares for each option sold to form a riskless portfolio. The parameter ! (delta) is
important in the hedging of options. It is discussed further later in this chapter and in
Chapter 19.

A Generalization

We can generalize the no-arbitrage argument just presented by considering a stock
whose price is S0 and an option on the stock (or any derivative dependent on the stock)
whose current price is f . We suppose that the option lasts for time T and that during
the life of the option the stock price can either move up from S0 to a new level, S0u,
where u > 1, or down from S0 to a new level, S0d, where d < 1. The percentage increase
in the stock price when there is an up movement is u" 1; the percentage decrease when
there is a down movement is 1" d. If the stock price moves up to S0u, we suppose that
the payoff from the option is fu; if the stock price moves down to S0d, we suppose the
payoff from the option is fd. The situation is illustrated in Figure 13.2.

As before, we imagine a portfolio consisting of a long position in ! shares and a
short position in one option. We calculate the value of ! that makes the portfolio
riskless. If there is an up movement in the stock price, the value of the portfolio at the
end of the life of the option is

S0u!" fu

f
S0

fd
S0d

fu
S0u

Figure 13.2 Stock and option prices in a general one-step tree.
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To prove the validity of our interpretation of p, we note that, when p is the
probability of an up movement, the expected stock price EðST Þ at time T is given by

EðST Þ ¼ pS0uþ ð1 % pÞS0d
or

EðST Þ ¼ pS0ðu % dÞ þ S0d

Substituting from equation (13.3) for p gives

EðST Þ ¼ S0e
rT ð13:4Þ

This shows that the stock price grows, on average, at the risk-free rate when p is the
probability of an up movement. In other words, the stock price behaves exactly as we
would expect it to behave in a risk-neutral world when p is the probability of an up
movement.

Risk-neutral valuation is a very important general result in the pricing of derivatives.
It states that, when we assume the world is risk-neutral, we get the right price for a
derivative in all worlds, not just in a risk-neutral one. We have shown that risk-neutral
valuation is correct when a simple binomial model is assumed for how the price of the
the stock evolves. It can be shown that the result is true regardless of the assumptions
we make about the evolution of the stock price.

To apply risk-neutral valuation to the pricing of a derivative, we first calculate what
the probabilities of different outcomes would be if the world were risk-neutral. We then
calculate the expected payoff from the derivative and discount that expected payoff at
the risk-free rate of interest.

The One-Step Binomial Example Revisited

We now return to the example in Figure 13.1 and illustrate that risk-neutral valuation
gives the same answer as no-arbitrage arguments. In Figure 13.1, the stock price is
currently $20 and will move either up to $22 or down to $18 at the end of 3 months.
The option considered is a European call option with a strike price of $21 and an
expiration date in 3 months. The risk-free interest rate is 4% per annum.

We define p as the probability of an upward movement in the stock price in a risk-
neutral world. We can calculate p from equation (13.3). Alternatively, we can argue that
the expected return on the stock in a risk-neutral world must be the risk-free rate of 4%.
This means that p must satisfy

22pþ 18ð1 % pÞ ¼ 20e0:04&3=12

or
4p ¼ 20e0:04&3=12 % 18

That is, p must be 0.5503.
At the end of the 3 months, the call option has a 0.5503 probability of being worth 1

and a 0.4497 probability of being worth zero. Its expected value is therefore

0:5503& 1þ 0:4497& 0 ¼ 0:5503

In a risk-neutral world this should be discounted at the risk-free rate. The value of the
option today is therefore

0:5503e% 0:04&3=12
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If there is a down movement in the stock price, the value becomes

S0d!! fd
The two are equal when

S0u!! fu ¼ S0d!! fd
or

! ¼ fu ! fd
S0u! S0d

ð13:1Þ

In this case, the portfolio is riskless and, for there to be no arbitrage opportunities, it
must earn the risk-free interest rate. Equation (13.1) shows that ! is the ratio of the
change in the option price to the change in the stock price as we move between the
nodes at time T .

If we denote the risk-free interest rate by r, the present value of the portfolio is

ðS0u!! fuÞe!rT

The cost of setting up the portfolio is
S0!! f

It follows that
S0!! f ¼ ðS0u!! fuÞe!rT

or
f ¼ S0!ð1! ue!rT Þ þ fue

!rT

Substituting from equation (13.1) for !, we obtain

f ¼ S0

!
fu ! fd

S0u! S0d

"
ð1! ue!rT Þ þ fue

!rT

or

f ¼ fuð1! de!rT Þ þ fdðue!rT ! 1Þ
u! d

or
f ¼ e!rT ½pfu þ ð1! pÞfd' ð13:2Þ

where

p ¼ erT ! d

u! d
ð13:3Þ

Equations (13.2) and (13.3) enable an option to be priced when stock price movements
are given by a one-step binomial tree. The only assumption needed for the equation is
that there are no arbitrage opportunities in the market.

In the numerical example considered previously (see Figure 13.1), u ¼ 1:1, d ¼ 0:9,
r ¼ 0:04, T ¼ 0:25, fu ¼ 1, and fd ¼ 0. From equation (13.3), we have

p ¼ e0:04(3=12 ! 0:9

1:1! 0:9
¼ 0:5503

and, from equation (13.2), we have

f ¼ e!0:04(0:25ð0:5503( 1þ 0:4497( 0Þ ¼ 0:545

The result agrees with the answer obtained earlier in this section.
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where ST is the asset price at time T andK is the strike price. Because a risk-neutral world is
being assumed, the value at each node at time T !!t can be calculated as the expected
value at time T discounted at rate r for a time period!t. Similarly, the value at each node
at time T ! 2!t can be calculated as the expected value at time T !!t discounted for a
time period !t at rate r, and so on. If the option is American, it is necessary to check at
each node to see whether early exercise is preferable to holding the option for a further
time period!t. Eventually, by working back through all the nodes, we are able to obtain
the value of the option at time zero.

Example 21.1

Consider a 5-month American put option on a non-dividend-paying stock when
the stock price is $50, the strike price is $50, the risk-free interest rate is 10% per
annum, and the volatility is 40% per annum. With our usual notation, this means
that S0 ¼ 50, K ¼ 50, r ¼ 0:10, ! ¼ 0:40, T ¼ 0:4167, and q¼ 0. Suppose that we
divide the life of the option into five intervals of length 1 month (¼ 0:0833 year)
for the purposes of constructing a binomial tree. Then !t ¼ 0:0833 and using
equations (21.4) to (21.7) gives

u ¼ e!
ffiffiffiffi
!t

p
¼ 1:1224; d ¼ e!!

ffiffiffiffi
!t

p
¼ 0:8909; a ¼ er!t ¼ 1:0084

p ¼ a! d

u! d
¼ 0:5073; 1! p ¼ 0:4927

Figure 21.3 shows the binomial tree produced by DerivaGem. At each node there
are two numbers. The top one shows the stock price at the node; the lower one
shows the value of the option at the node. The probability of an up movement is
always 0.5073; the probability of a down movement is always 0.4927.

S0

S0d

S0u

S0u2

S0u3

S0u4

S0u2

S0 S0

S0d2 S0d2

S0d4

S0u

S0d

S0d3

Figure 21.2 Tree used to value an option.
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Hence,
pu2 þ ð1 # pÞd2 # e2ðr# qÞ!t ¼ !2!t

From equation (21.1), eðr# qÞ!tðuþ dÞ ¼ pu2 þ ð1 # pÞd2 þ ud, so that

eðr# qÞ!tðuþ dÞ # ud # e2ðr# qÞ!t ¼ !2!t ð21:2Þ

Equations (21.1) and (21.2) impose two conditions on p, u, and d. A third condition
used by Cox, Ross, and Rubinstein (1979) is3

u ¼ 1=d ð21:3Þ

A solution to equations (21.1) to (21.3), when terms of higher order than !t are
ignored, is4

p ¼ a # d

u # d
ð21:4Þ

u ¼ e!
ffiffiffiffi
!t

p
ð21:5Þ

d ¼ e# !
ffiffiffiffi
!t

p
ð21:6Þ

where
a ¼ eðr# qÞ!t ð21:7Þ

The variable a is sometimes referred to as the growth factor. Equations (21.4) to (21.7)
are the same as those in Sections 13.8 and 13.11.

Tree of Asset Prices

Figure 21.2 shows the complete tree of asset prices that is considered when the binomial
model is used with four time steps. At time zero, the asset price, S0, is known. At time
!t, there are two possible asset prices, S0u and S0d; at time 2!t, there are three possible
asset prices, S0u

2, S0, and S0d
2; and so on. In general, at time i!t, we consider iþ 1

asset prices. These are
S0u

jdi# j; j ¼ 0; 1; . . . ; i

Note that the relationship u ¼ 1=d is used in computing the asset price at each node of
the tree in Figure 21.2. For example, the asset price when j ¼ 2 and i ¼ 3 is
S0u

2d ¼ S0u. Note also that the tree recombines in the sense that an up movement
followed by a down movement leads to the same asset price as a down movement
followed by an up movement.

Working Backward through the Tree

Options are evaluated by starting at the end of the tree (time T ) and working backward.
This is known as backward induction. The value of the option is known at time T . For
example, a put option is worthmaxðK # ST ; 0Þ and acall option is worthmaxðST # K; 0Þ,

3 See J. C. Cox, S.A. Ross, and M. Rubinstein, ‘‘Option Pricing: A Simplified Approach,’’ Journal of
Financial Economics, 7 (October 1979), 229–63.
4 To see this, we note that equations (21.4) and (21.7) satisfy the conditions in equations (21.1) and (21.3)
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ffiffiffiffiffi
!t

p
þ 1

2!
2!t and equation (21.6) implies that

d ¼ 1 # !
ffiffiffiffiffi
!t

p
þ 1

2!
2!t. Also, eðr# qÞ!t ¼ 1þ ðr # qÞ!t and e2ðr# qÞ!t ¼ 1þ 2ðr # qÞ!t. By substitution, we see

that equation (21.2) is satisfied when terms of higher order than !t are ignored.
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⇒

Hence,
pu2 þ ð1 # pÞd2 # e2ðr# qÞ!t ¼ !2!t
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Equations (21.1) and (21.2) impose two conditions on p, u, and d. A third condition
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u ¼ 1=d ð21:3Þ
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ignored, is4

p ¼ a # d

u # d
ð21:4Þ

u ¼ e!
ffiffiffiffi
!t

p
ð21:5Þ

d ¼ e# !
ffiffiffiffi
!t

p
ð21:6Þ

where
a ¼ eðr# qÞ!t ð21:7Þ

The variable a is sometimes referred to as the growth factor. Equations (21.4) to (21.7)
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An American put option

where ST is the asset price at time T andK is the strike price. Because a risk-neutral world is
being assumed, the value at each node at time T !!t can be calculated as the expected
value at time T discounted at rate r for a time period!t. Similarly, the value at each node
at time T ! 2!t can be calculated as the expected value at time T !!t discounted for a
time period !t at rate r, and so on. If the option is American, it is necessary to check at
each node to see whether early exercise is preferable to holding the option for a further
time period!t. Eventually, by working back through all the nodes, we are able to obtain
the value of the option at time zero.

Example 21.1

Consider a 5-month American put option on a non-dividend-paying stock when
the stock price is $50, the strike price is $50, the risk-free interest rate is 10% per
annum, and the volatility is 40% per annum. With our usual notation, this means
that S0 ¼ 50, K ¼ 50, r ¼ 0:10, ! ¼ 0:40, T ¼ 0:4167, and q¼ 0. Suppose that we
divide the life of the option into five intervals of length 1 month (¼ 0:0833 year)
for the purposes of constructing a binomial tree. Then !t ¼ 0:0833 and using
equations (21.4) to (21.7) gives

u ¼ e!
ffiffiffiffi
!t

p
¼ 1:1224; d ¼ e!!

ffiffiffiffi
!t

p
¼ 0:8909; a ¼ er!t ¼ 1:0084

p ¼ a! d

u! d
¼ 0:5073; 1! p ¼ 0:4927

Figure 21.3 shows the binomial tree produced by DerivaGem. At each node there
are two numbers. The top one shows the stock price at the node; the lower one
shows the value of the option at the node. The probability of an up movement is
always 0.5073; the probability of a down movement is always 0.4927.

S0

S0d

S0u

S0u2

S0u3

S0u4

S0u2

S0 S0

S0d2 S0d2

S0d4

S0u

S0d

S0d3

Figure 21.2 Tree used to value an option.
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The stock price at the jth node (j ¼ 0; 1; . . . ; i) at time i!t (i ¼ 0; 1; . . . ; 5) is
calculated as S0u

jdi"j. For example, the stock price at node A (i ¼ 4; j ¼ 1) (i.e.,
the second node up at the end of the fourth time step) is 50# 1:1224# 0:89093 ¼
$39:69. The option prices at the final nodes are calculated as maxðK" ST ; 0Þ. For
example, the option price at node G is 50:00" 35:36 ¼ 14:64. The option prices at
the penultimate nodes are calculated from the option prices at the final nodes.
First, we assume no exercise of the option at the nodes. This means that the
option price is calculated as the present value of the expected option price one
time step later. For example, at node E, the option price is calculated as

ð0:5073# 0 þ 0:4927# 5:45Þe"0:10#0:0833 ¼ 2:66

whereas at node A it is calculated as

ð0:5073# 5:45 þ 0:4927# 14:64Þe"0:10#0:0833 ¼ 9:90

At each node:
 Upper value = Underlying Asset Price
 Lower value = Option Price
Shading indicates where option is exercised

Strike price = 50
Discount factor per step = 0.9917 89.07
Time step, dt = 0.0833 years, 30.42 days 0.00
Growth factor per step, a = 1.0084 79.35
Probability of up move, p = 0.5073 0.00
Up step size, u = 1.1224 70.70 70.70
Down step size, d = 0.8909         F 0.00 0.00

62.99 62.99
0.64 0.00

56.12 56.12 56.12
          D 2.16         C 1.30         E 0.00

50.00 50.00 50.00
4.49 3.77 2.66

44.55 44.55 44.55
6.96         B 6.38        A 5.45

39.69 39.69
10.36 10.31          G

35.36 35.36
14.64 14.64

31.50
18.50

28.07
21.93

Node Time: 
0.0000 0.0833 0.1667 0.2500 0.3333 0.4167

Figure 21.3 Binomial tree from DerivaGem for American put on non-dividend-
paying stock (Example 21.1).
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early exercise is more profitable

option  
price



Number of periods

time i!t captures not only the effect of early exercise possibilities at time i!t, but also
the effect of early exercise at subsequent times.

In the limit as !t tends to zero, an exact value for the American put is obtained. In
practice, N ¼ 30 usually gives reasonable results. Figure 21.4 shows the convergence of
the option price in Example 21.1. This figure was calculated using the Application
Builder functions provided with the DerivaGem software (see Sample Application A).

Estimating Delta and Other Greek Letters

It will be recalled that the delta (!) of an option is the rate of change of its price with
respect to the underlying stock price. It can be calculated as

!f

!S

where !S is a small change in the asset price and !f is the corresponding small change
in the option price. At time !t, we have an estimate f1;1 for the option price when the
asset price is S0u and an estimate f1;0 for the option price when the asset price is S0d.
This means that, when !S ¼ S0u" S0d;!f ¼ f1;1 " f1;0. Therefore an estimate of
delta at time !t is

! ¼
f1;1 " f1;0

S0u" S0d
ð21:8Þ

To determine gamma ("), note that we have two estimates of ! at time 2!t.
When S ¼ ðS0u2 þ S0Þ=2 (halfway between the second and third node), delta is
ðf2;2 " f2;1Þ=ðS0u2 " S0Þ; when S ¼ ðS0 þ S0d

2Þ=2 (halfway between the first and second
node), delta is ðf2;1 " f2;0Þ=ðS0 " S0d

2Þ. The difference between the two values of S is h,
where

h ¼ 0:5ðS0u2 " S0d
2Þ

3.60

3.80

4.00

4.20

4.40

4.60

4.80

5.00

0 5 10 15 20 25 30 35 40 45 50

No. of steps

Option
value

Figure 21.4 Convergence of the price of the option in Example 21.1 calculated from
the DerivaGem Application Builder functions.
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### Binomial Tree of an American Put Option ###
rm(list = ls())   # remove (almost) everything in the working environment

## Parameters
n <- 5   # number of periods
S0 <- 50  # stock price at period 0
K <- 50   # strike price
r <- 0.1   # risk-free interest rate (annual)
q <- 0   # yield of the underlying asset (annual)
sigma <- 0.4   # volatility (annual)
M <- 5/12   # maturity (in years)

## Variables
dt <- M/n   # duration of each period (in years)
u <- exp(sigma * sqrt(dt))   # up step size
d <- 1/u   # down step size
a <- exp((r-q) * dt)   # growth factor per step
p <- (a-d) / (u-d)   # probability of up move

S <- matrix(rep(0, (n+1)^2), n+1, n+1)   # stock prices
V <- matrix(rep(0, (n+1)^2), n+1, n+1)   # option values
S[1,1] <- S0



## Calculation of stock prices
# # Method 1
# for (j in 2:(n+1)) {
#   for (i in 1:j) {
#     nd <- i - 1   # number of down moves
#     nu <- j - 1 - nd   # number of up moves
#     S[i,j] <- S0 * u^nu * d^nd
#   }
# }

# Method 2
for (j in 2:(n+1)) {
  for (i in 1:j-1) {
    S[i,j] <- S[i,j-1] * u
  }
  S[j,j] <- S[j-1,j-1] * d
}



## Calculation of option values
# Final nodes
for (i in 1:n+1) {
  V[i,n+1] <- max(K-S[i,n+1], 0)
}

# Earlier nodes
for (j in n:1) {
  for (i in 1:j) {
    dp <- (p * V[i,j+1] + (1-p) * V[i+1,j+1]) * exp(-r * dt)   
        # discounted price
    V[i,j] <- max(K-S[i,j], dp)   
        # comparing the early exercise and discounted price
  }
}

# the option value is V[1,1]





## Demonstration of the convergence of option value
optionPrice <- function(n, S0, K, r, q, sigma, M) {
  ## Variables
  …… 
  
  ## Calculation of stock prices
  ……
  
  ## Calculation of option values
  # Final nodes
  ……
  # Earlier nodes
  ……

  return(V[1,1])
}

seqn <- 2:50
seqV <- rep(0, length(seqn))

for (k in 1:length(seqn)) {
  seqV[k] <- optionPrice(seqn[k], S0, K, r, q, sigma, M)
}

plot(seqn, seqV, type = "o", xlab = "No. of steps", ylab = "Option price")





Models of stock price 
Black-Sholes-Merton model
• Assume that the percentage changes in stock price in a 

very short period of time are normally distributed.


• Denote 
 
 
 
Then,

15.1 LOGNORMAL PROPERTY OF STOCK PRICES

The model of stock price behavior used by Black, Scholes, and Merton is the model we
developed in Chapter 14. It assumes that percentage changes in the stock price in a very
short period of time are normally distributed. Define

! : Expected return in a short period of time (annualized)

" : Volatility of the stock price.

The mean and standard deviation of the return in time !t are approximately !!t and
"

ffiffiffiffiffi
!t

p
, so that

!S

S
! #ð!!t; "2!tÞ ð15:1Þ

where !S is the change in the stock price S in time !t, and #ðm; vÞ denotes a normal
distribution with mean m and variance v. (This is equation (14.9).)

As shown in Section 14.7, the model implies that

ln ST $ ln S0 ! #

"#
! $ "2

2

$
T ; "2T

%

so that

ln
ST
S0

! #

"#
! $ "2

2

$
T ; "2T

%
ð15:2Þ

and

ln ST ! #

"
ln S0 þ

#
! $ "2

2

$
T ; "2T

%
ð15:3Þ

where ST is the stock price at a future time T and S0 is the stock price at time 0. There is
no approximation here. The variable ln ST is normally distributed, so that ST has a
lognormal distribution. The mean of ln ST is ln S0 þ ð! $ "2=2ÞT and the standard
deviation of ln ST is "

ffiffiffiffi
T

p
.

Example 15.1

Consider a stock with an initial price of $40, an expected return of 16% per
annum, and a volatility of 20% per annum. From equation (15.3), the probability
distribution of the stock price ST in 6 months’ time is given by

ln ST ! #½ln 40þ ð0:16 $ 0:22=2Þ ' 0:5; 0:22 ' 0:5(
ln ST ! #ð3:759; 0:02Þ

There is a 95% probability that a normally distributed variable has a value within
1.96 standard deviations of its mean. In this case, the standard deviation isffiffiffiffiffiffiffiffiffi
0:02

p
¼ 0:141. Hence, with 95% confidence,

3:759 $ 1:96' 0:141 < ln ST < 3:759þ 1:96' 0:141

This can be written
e3:759$ 1:96'0:141 < ST < e3:759þ1:96'0:141

or
32:55 < ST < 56:56

Thus, there is a 95% probability that the stock price in 6 months will lie between
32.55 and 56.56.
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• The stock price process (in continuous time) 
 

• The discrete version 
 
 
 
where     has a standard 
normal distribution. 

Assumptions

The assumptions we use to derive the Black–Scholes–Merton differential equation are
as follows:

1. The stock price follows the process developed in Chapter 14 with ! and " constant.

2. The short selling of securities with full use of proceeds is permitted.

3. There are no transaction costs or taxes. All securities are perfectly divisible.

4. There are no dividends during the life of the derivative.

5. There are no riskless arbitrage opportunities.

6. Security trading is continuous.

7. The risk-free rate of interest, r, is constant and the same for all maturities.

As we discuss in later chapters, some of these assumptions can be relaxed. For example,
" and r can be known functions of t. We can even allow interest rates to be stochastic
provided that the stock price distribution at maturity of the option is still lognormal.

15.6 DERIVATION OF THE BLACK–SCHOLES–MERTON
DIFFERENTIAL EQUATION

In this section, the notation is different from elsewhere in the book. We consider a
derivative’s price at a general time t (not at time zero). If T is the maturity date, the time
to maturity is T ! t.

The stock price process we are assuming is the one we developed in Section 14.3:

dS ¼ !S dtþ "S dz ð15:8 Þ

Suppose that f is the price of a call option or other derivative contingent on S. The
variable f must be some function of S and t. Hence, from equation (14.14),

df ¼
!
@f

@S
!S þ @f

@t
þ 1

2

@2f

@S 2
"2S 2

"
dtþ @f

@S
"S dz ð15:9 Þ

The discrete versions of equations (15.8) and (15.9) are

!S ¼ !S!tþ "S!z ð15:10 Þ
and

!f ¼
!
@f

@S
!S þ @f

@t
þ 1

2

@2f

@S 2
"2S 2

"
!tþ @f

@S
"S!z ð15:11Þ

where !f and !S are the changes in f and S in a small time interval !t. Recall from
the discussion of Itô’s lemma in Section 14.6 that the Wiener processes underlying f

and S are the same. In other words, the !z (¼ #
ffiffiffiffiffi
!t

p
Þ in equations (15.10) and (15.11)

are the same. It follows that a portfolio of the stock and the derivative can be
constructed so that the Wiener process is eliminated. The portfolio is

!1: derivative

þ@f=@S : shares.
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If the coefficient of dz is zero, so that there is no uncertainty, then this model implies
that

!S ¼ !S!t

in the limit, as !t ! 0, so that:
dS ¼ !S dt

or
dS

S
¼ ! dt

Integrating between time 0 and time T , we get

ST ¼ S0e
!T ð14:5Þ

where S0 and ST are the stock price at time 0 and time T . Equation (14.5) shows that,
when there is no uncertainty, the stock price grows at a continuously compounded rate
of ! per unit of time.

In practice, of course, there is uncertainty. A reasonable assumption is that the
variability of the return in a short period of time, !t, is the same regardless of the
stock price. In other words, an investor is just as uncertain about the return when the
stock price is $50 as when it is $10. This suggests that the standard deviation of the
change in a short period of time !t should be proportional to the stock price and leads
to the model

dS ¼ !S dt þ "S dz
or

dS

S
¼ ! dt þ " dz ð14:6Þ

Equation (14.6) is the most widely used model of stock price behavior. The variable ! is
the stock’s expected rate of return. The variable " is the volatility of the stock price. The
variable "2 is referred to as its variance rate. The model in equation (14.6) represents
the stock price process in the real world. In a risk-neutral world, ! equals the risk-free
rate r.

Discrete-Time Model

The model of stock price behavior we have developed is known as geometric Brownian
motion. The discrete-time version of the model is

!S

S
¼ !!t þ "#

ffiffiffiffiffi
!t

p
ð14:7Þ

or
!S ¼ !S!t þ "S#

ffiffiffiffiffi
!t

p
ð14:8Þ

The variable !S is the change in the stock price S in a small time interval !t, and as
before #has a standard normal distribution (i.e., a normal distribution with a mean of
zero and standard deviation of 1.0). The parameter ! is the expected rate of return per
unit of time from the stock. The parameter " is the stock price volatility. In this chapter
we will assume these parameters are constant.

The left-hand side of equation (14.7) is the discrete approximation to the return
provided by the stock in a short period of time, !t. The term !!t is the expected value
of this return, and the term "#

ffiffiffiffiffi
!t

p
is the stochastic component of the return. The
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BSM pricing formulas
• Price of European call options: 

 

• Price of European put options: 
 
 
 
where 

Black–Scholes–Merton differential equation. The solutions that are obtained are valid
in all worlds, not just those where investors are risk neutral. When we move from a risk-
neutral world to a risk-averse world, two things happen. The expected payoff from the
derivative changes and the discount rate that must be used for this payoff changes. It
happens that these two changes always offset each other exactly.

Application to Forward Contracts on a Stock

We valued forward contracts on a non-dividend-paying stock in Section 5.7. In
Example 15.5, we verified that the pricing formula satisfies the Black–Scholes–Merton
differential equation. In this section we derive the pricing formula from risk-neutral
valuation. We make the assumption that interest rates are constant and equal to r. This
is somewhat more restrictive than the assumption in Chapter 5.

Consider a long forward contract that matures at time T with delivery price, K. As
indicated in Figure 1.2, the value of the contract at maturity is

ST !K

where ST is the stock price at time T . From the risk-neutral valuation argument, the
value of the forward contract at time 0 is its expected value at time T in a risk-neutral
world discounted at the risk-free rate of interest. Denoting the value of the forward
contract at time zero by f , this means that

f ¼ e!rT ÊðST !KÞ

where Ê denotes the expected value in a risk-neutral world. Since K is a constant, this
equation becomes

f ¼ e!rT ÊðST Þ !Ke!rT ð15:18Þ

The expected return ! on the stock becomes r in a risk-neutral world. Hence, from
equation (15.4), we have

ÊðST Þ ¼ S0e
rT ð15:19Þ

Substituting equation (15.19) into equation (15.18) gives

f ¼ S0 !Ke!rT

This is in agreement with equation (5.5).

15.8 BLACK–SCHOLES–MERTON PRICING FORMULAS

The most famous solutions to the differential equation (15.16) are the Black–Scholes–
Merton formulas for the prices of European call and put options. These formulas are:

c ¼ S0Nðd1Þ !Ke!rTNðd2Þ ð15:20Þ
and

p ¼ Ke!rTNð!d2Þ ! S0Nð!d1Þ ð15:21Þ
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where

d1 ¼
ln ðS0=KÞ þ ðrþ !2=2ÞT

!
ffiffiffiffi
T

p

d2 ¼
ln ðS0=KÞ þ ðr % !2=2ÞT

!
ffiffiffiffi
T

p ¼ d1 % !
ffiffiffiffi
T

p

The function Nðx Þ is the cumulative probability distribution function for a variable with
a standard normal distribution. In other words, it is the probability that a variable with
a standard normal distribution will be less than x . It is illustrated in Figure 15.3. The
remaining variables should be familiar. The variables c and p are the European call and
European put price, S0 is the stock price at time zero, K is the strike price, r is the
continuously compounded risk-free rate, ! is the stock price volatility, and T is the time
to maturity of the option.

One way of deriving the Black–Scholes–Merton formulas is by solving the differ-
ential equation (15.16) subject to the boundary condition mentioned in Section 15.6.7

(See Problem 15.17 to prove that the call price in equation (15.20) satisfies the
differential equation.) Another approach is to use risk-neutral valuation. Consider a
European call option. The expected value of the option at maturity in a risk-neutral
world is

Ê½maxðST % K; 0Þ'

where, as before, Ê denotes the expected value in a risk-neutral world. From the risk-
neutral valuation argument, the European call option price c is this expected value
discounted at the risk-free rate of interest, that is,

c ¼ e% rT Ê½maxðST % K; 0Þ' ð15:22Þ

x0

Figure 15.3 Shaded area represents Nðx Þ.

7 The differential equation gives the call and put prices at a general time t. For example, the call price that
satisfies the differential equation is c ¼ SNðd1Þ % Ke% rðT % tÞNðd2Þ, where

d1 ¼
lnðS=KÞ þ ðrþ !2=2ÞðT % tÞ

!
ffiffiffiffiffiffiffiffiffiffiffi
T % t

p

and d2 ¼ d1 % !
ffiffiffiffiffiffiffiffiffiffiffi
T % t

p
.
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Monte Carlo simulation
• According to the discrete version of BSM model, we can 

generate sample paths of stock price using a pseudo 
random number generator. 


• Assume that every sample path of stock price occurs with 
equal probability. Then the option payoff at maturity is the 
sample mean of payoffs derived from each sample path.

discrete version of the process for !i is then

!iðt þ !tÞ $ !iðtÞ ¼ m̂i!iðtÞ!t þ si!iðtÞ"i
ffiffiffiffiffi
!t

p
ð21:18Þ

where "i is a random sample from a standard normal distribution. The coefficient of
correlation between "i and "k is #ik (1 6 i; k 6 n). One simulation trial involves obtain-
ing N samples of the "i (1 6 i 6 n) from a multivariate standardized normal distribu-
tion. These are substituted into equation (21.18) to produce simulated paths for each !i,
thereby enabling a sample value for the derivative to be calculated.

Table 21.2 Monte Carlo simulation to check Black–Scholes–Merton.

A B C D E F G

1 45.95 0 S0 K r $ T

2 54.49 4.38 50 50 0.05 0.3 0.5
3 50.09 0.09 d1 d2 BSM price
4 47.46 0 0.2239 0.0118 4.817
5 44.93 0
..
. ..

. ..
.

1000 68.27 17.82
1001
1002 Mean: 4.98
1003 SD: 7.68

Business Snapshot 21.2 Checking Black–Scholes–Merton in Excel

The Black–Scholes–Merton formula for a European call option can be checked by
using a binomial tree with a very large number of time steps. An alternative way of
checking it is to use Monte Carlo simulation. Table 21.2 shows a spreadsheet that can
be constructed. The cells C2,D2, E2, F2, andG2 contain S0,K, r, $, and T , respectively.
Cells D4, E4, and F4 calculate d1, d2, and the Black–Scholes–Merton price, respec-
tively. (The Black–Scholes–Merton price is 4.817 in the sample spreadsheet.)

NORMSINV is the inverse cumulative function for the standard normal distribu-
tion. It follows that NORMSINV(RAND())gives a random sample from a standard
normal distribution. We set cell A1 as

¼ $C$2*EXP(($E$2$ $F$2*$F$2/2)*$G$2þ $F$2*NORMSINV(RAND( ))*SQRT($G$2))

This corresponds to equation (21.17) and is a random sample from the set of all stock
prices at time T . We set cell B1 as

¼ EXP($ $E$2*$G$2)*MAX(A1$ $D$2,0)

This is the present value of the payoff from a call option. We define the next 999 rows
of the spreadsheet similarly to the first one. (This is a ‘‘select and drag’’ operation in
Excel.) Define B1002 as AVERAGE(B1:B1000), which is 4.98 in the sample spread-
sheet. This is an estimate of the value of the option and should be not too far from
the Black–Scholes–Merton price. B1003 is defined as STDEV(B1:B1000). As we shall
see in Example 21.8, it can be used to assess the accuracy of the estimate.
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### Monte Carlo Simulation of Black-Sholes-Merton Model
rm(list = ls())  # remove (almost) everything in the working environment

## Parameters of a European call option
S0 <- 50   
K <- 50
r <- 0.05
sigma <- 0.3
M <- 0.5 
n <- 100   # number of periods
nn <- 1000   # number of sample paths

## Variables
dt <- M/n
S <- matrix(rep(0, n*nn), nn, n)   # sample paths of stock price
V <- rep(0, nn)   # option values at maturity



## Generation of sample paths
RN <- matrix(rnorm(n*nn), nn, n)   # random noise matrix
for (k in 1:nn) {
  # period 1
  S[k,1] <- S0 * (1 + r * dt + sigma * sqrt(dt) * RN[k,1])
  # later periods
  for (t in 2:n) {
    S[k,t] <- S[k,t-1] * (1 + r * dt + sigma * sqrt(dt) * RN[k,t])
  }
}

## Calculation of price
for (k in 1:nn) {
  V[k] <- max(S[k,n] - K, 0)
}

MCprice <- mean(V)   # price obtained from MC simulation



## Plots
# first 100 sample paths (gray)
plot(1:n, S[1,], type = "l", ylim = c(20, 80), col = "gray", xlab = 
"Periods", ylab = "Stock price")
for (k in 2:100) {
  lines(1:n, S[k,], col = "gray")   
}
# add averaged price of all sample paths (black) 
lines(1:n, colMeans(S,2), col = "black")

## BSM formula
d1 <- (log(S0/K) + (r + sigma^2/2)*M) / (sigma * sqrt(M))
d2 <- d1 - sigma * sqrt(M)
BSMprice <- S0 * pnorm(d1) - K * exp(-r * M) * pnorm(d2)   # price 
obtained from BSM formula



MC price = 4.7666,    BSM price = 4.8174


