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博弈论与信息经济学
8. 隐藏信息的博弈分析：逆向选择问题与信号传递



逆向选择问题



柠檬市场的博弈模型

• 参与⼈ 1 拥有⼀⽚橙⼦树，并了解其⼟地的肥沃程度


• 从公开信息可以了解到，该⽚⼟地为 (贫瘠 = 、中等 = 、肥沃 = ) 的概率分布为 。因此我们可以
设参与⼈ 1 的类型为他所了解的⼟地状态 


• 参与⼈ 1 从拥有该⽚⼟地获得的回报为 
 

	 	  

• 参与⼈ 2 打算买下该⽚⼟地⽤来种⼤⾖，他从拥有该⽚⼟地获得的回报为 
 

	 	

L M H ( 1
3 , 1

3 , 1
3 )

Θ1 = {L, M, H}

v1(θ1) =
10  if θ1 = L
20  if θ1 = M
30  if θ1 = H

v2(θ1) =
14  if θ1 = L
24  if θ1 = M
34  if θ1 = H
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柠檬市场的博弈模型

• 参与⼈ 2 只能从公开信息了解该⽚⼟地的状态 
（信息不对称）


• 考虑下⾯的博弈


- 参与⼈ 2 提出以价格  购买该⽚⼟地， 
然后参与⼈ 1 可以接受（ ）或拒绝（ ）


- 参与⼈ 1 的纯策略是 ， 
即在每⼀个可能的价格和类型的组合中选择  或 


• 当参与⼈ 1 知道⾃⼰的类型时（事中），其最优反应是 
 

,    ,     

 
因此，在 BNE 策略中，参与⼈ 1 只有可能选择  ,  ,  , 或 

  

p ≥ 0
A R

s2 : [0,∞) × {L, M, H} → {A, R}
A R

BR1(p ∣ L) = {A  if p ≥ 10
R  if p ≤ 10

BR1(p ∣ M) = {A  if p ≥ 20
R  if p ≤ 20

BR1(p ∣ H) = {A  if p ≥ 30
R  if p ≤ 30

AAA (p ≥ 30) AAR (20 ≤ p ≤ 30) ARR (10 ≤ p ≤ 20)
RRR (p ≤ 10)
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FIGURE 12.5 A trading game with incomplete information.

very profitable, but that pursuit also depends on the quality of the land. In particular
player 2’s monetary-equivalent values are given by

v2(θ1) =






14 if θ1 = L

24 if θ1 = M

34 if θ1 = H .

The problem, however, is that player 2 knows only that the quality is distributed
equally among the three options (the geological survey’s results); he does not know
which of the three it is.

Consider the following game: player 2 makes a take-it-or-leave-it price offer to
player 1, after which player 1 can accept (A) or reject (R) the offer, and the game ends
with either a transfer of land for the suggested price or no transfer. A strategy for player
2 is therefore a single price offer, p ≥ 0, and a pure strategy for player 1 is a mapping
from the offered price and his type space "1 to a response, s1 : [0, ∞) × "1 → {A, R}.
The game is depicted in Figure 12.5.

The assumptions on the payoffs of the two players imply that from an efficiency
point of view player 2 should own the land. Indeed if the quality of the land were
common knowledge then there would be many prices at which both player 1 and
player 2 would be happy to trade the property. For example, if the quality were known
to be low then, as in the one-period bargaining model in Section 11.1 (the ultimatum
game), the unique subgame-perfect equilibrium would have player 2 offering player
1 a price of 10 and player 1 accepting. Similarly any price between 10 and 14 would
be supported by some Nash equilibrium.5 We will now see which trades are possible
in equilibrium when there is incomplete information as previously described.

Let’s consider the value that player 2 places on the land. He knows that with equal
probability it is worth one of the values v2 ∈ {14, 24, 34}, so on average it is worth
24. He also knows that on average it is worth 20 to player 1. It would seem that the
natural equilibrium candidate would be to offer the lowest price at which player 2
thinks that player 1 will accept, and such an offer would be p = 20.

5. For any p∗ ∈ [10, 14] a strategy for player 1 of accepting any offer p ≥ p∗ and a strategy for
player 2 of offering p∗ would be a Nash equilibrium when the quality is low.



柠檬市场的博弈模型

• 参与⼈ 2 的期望回报是 
 

 

 
 
因此，当参与⼈ 1 选择  时，只有  会给参与⼈ 2 带来正的期望回报，但此时参与⼈ 1 不会选择 

。同理参与⼈ 1 不会选择 。参与⼈ 1 选择  的条件是 ，同时参与⼈ 2 获得正期望回报的
条件是 ，因此可得出下⾯的结论 

对任意的 ，参与⼈ 1 的策略 “当⾃⼰的类型是  时，仅在  时接受交易；类型为  时，仅
在  时接受交易；类型为  时，仅在  时接受交易” 和参与⼈ 2 的策略 “ ” 构成了⼀个 BNE

V2(AAA, p) = 1
3 (14 − p)+ 1

3 (24 − p)+ 1
3 (34 − p) = 24 − p

V2(AAR, p) = 1
3 (14 − p)+ 1

3 (24 − p) = 2
3 (19 − p)

V2(ARR, p) = 1
3 (14 − p)

V2(RRR, p) = 0

AAA p ≤ 24
AAA AAR ARR p ≥ 10

p ≤ 14

p* ∈ [10, 14] L p ≥ p* M
p ≥ 20 H p ≥ 30 p = p*
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very profitable, but that pursuit also depends on the quality of the land. In particular
player 2’s monetary-equivalent values are given by

v2(θ1) =






14 if θ1 = L

24 if θ1 = M

34 if θ1 = H .

The problem, however, is that player 2 knows only that the quality is distributed
equally among the three options (the geological survey’s results); he does not know
which of the three it is.

Consider the following game: player 2 makes a take-it-or-leave-it price offer to
player 1, after which player 1 can accept (A) or reject (R) the offer, and the game ends
with either a transfer of land for the suggested price or no transfer. A strategy for player
2 is therefore a single price offer, p ≥ 0, and a pure strategy for player 1 is a mapping
from the offered price and his type space "1 to a response, s1 : [0, ∞) × "1 → {A, R}.
The game is depicted in Figure 12.5.

The assumptions on the payoffs of the two players imply that from an efficiency
point of view player 2 should own the land. Indeed if the quality of the land were
common knowledge then there would be many prices at which both player 1 and
player 2 would be happy to trade the property. For example, if the quality were known
to be low then, as in the one-period bargaining model in Section 11.1 (the ultimatum
game), the unique subgame-perfect equilibrium would have player 2 offering player
1 a price of 10 and player 1 accepting. Similarly any price between 10 and 14 would
be supported by some Nash equilibrium.5 We will now see which trades are possible
in equilibrium when there is incomplete information as previously described.

Let’s consider the value that player 2 places on the land. He knows that with equal
probability it is worth one of the values v2 ∈ {14, 24, 34}, so on average it is worth
24. He also knows that on average it is worth 20 to player 1. It would seem that the
natural equilibrium candidate would be to offer the lowest price at which player 2
thinks that player 1 will accept, and such an offer would be p = 20.

5. For any p∗ ∈ [10, 14] a strategy for player 1 of accepting any offer p ≥ p∗ and a strategy for
player 2 of offering p∗ would be a Nash equilibrium when the quality is low.

逆向选择：交易仅在⼟地贫瘠的情况下才能发⽣



解决逆向选择问题：信号传递



信号传递博弈
Signaling game

• 逆向选择问题的根源在于博弈中的⼀⽅不知道另⼀⽅的类型。如果另⼀⽅选择告知⾃⼰
的类型，是否就可以避免逆向选择问题呢？


• 2001年的诺⻉尔经济学奖授予了 George A. Akerlof, A. Michael Spence 和 Joseph 
E. Stiglitz，他们的获奖理由是“对⾮对称信息市场的分析”


• 其中 Michael Spence 的贡献是明确了 
在什么条件下，信号传递可以解决逆向 
选择问题。这是他在博⼠论⽂中的研究


- 在信号传递博弈中，了解信息（⾃⼰的类型） 
的⼀⽅⾸先选择⾏动


- 不了解信息的⼀⽅在观察到另⼀⽅的⾏动 
后，有可能推断出对⽅的类型
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教育的信号传递

• 在就业市场中，雇主因为不了解应聘者的实际能⼒，往往会出现逆向选择问题（雇主只能给出平均⼯
资，⽽平均⼯资只能吸引低能⼒的应聘者）。此时，应聘者可以通过⾃⼰的教育⽔平或毕业学校的层次
向雇主暗示⾃⼰的能⼒（⽽⾮所掌握的知识）


• 下⾯考虑获取 MBA 学位的信号传递作⽤


- 将参与⼈ 1（应聘者）按照能⼒分为两个类型 ，参与⼈ 2 ⽆法观察参与⼈ 1 的类型。假设共同先验
分布为 


- 参与⼈ 1 在知道⾃⼰的类型后，可以选择攻读 MBA 学位（ ）或者不攻读（ ）。这⾥我们不考虑攻读 MBA 
获得的知识，只考虑需要的成本。能⼒⾼的⼈通常学习起来⽐较轻松，因此可以假设 。这⾥设 




- 参与⼈ 2（雇主）可以给应聘者安排管理岗（ ）或⽣产岗（ ），两个岗位的⼯资满⾜ 。这⾥设 



- 不同类型的员⼯在不同岗位上创造的价值不同： 
⾼能⼒者更适合管理岗，低能⼒者更适合⽣产岗。 
员⼯能⼒和岗位的组合给雇主带来的纯利润为右图

Θ1 = {L, H}
Pr(θ1 = H) = p

D U
cH < cL

cH = 2, cL = 5

M B wM > wB
wM = 10, wB = 6

8
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focus attention on the signaling value of education, we will ignore any productive
value that education may provide. That is, we assume that a person learns nothing
productive from education but has to “suffer” the loss of time and the hard work of
studying to get a diploma, in this case an MBA degree.1 The game proceeds in the
following steps:

1. Nature chooses player 1’s skill (productivity at work), which can be high (H )
or low (L), and only player 1 knows his skill. Thus his type set is ! = {H, L}.
The probability that player 1’s type is H is given by Pr{θ = H } = p > 0, and
it is common knowledge that this is Nature’s prior distribution.

2. After player 1 learns his type, he can choose whether to get an MBA de-
gree (D) or be content with his undergraduate-level degree (U), so that his
action set is A1 = {D, U}. Getting an MBA requires some effort that is type
dependent. Player 1 incurs a private cost cθ if he gets an MBA, and a cost
of 0 if he does not. We assume that high-skilled types find it easier to study,
captured by the assumption that cH < cL. We assume in particular that cH = 2
and cL = 5.

3. Player 2 is an employer, who can assign player 1 to one of two jobs. Specifi-
cally player 2 can assign player 1 to be either a manager (M) or a blue-collar
worker (B), so that his action set is A2 = {M, B}. The employer will retain
the profit from the project and must pay a wage to the worker depending on
the job assignment. The market wage for a manager is wM and that for a blue-
collar worker is wB , where wM > wB . We assume in particular that wM = 10
and wB = 6.

4. Player 2’s payoff (the employer’s profit) is determined by the combination of
skill and job assignments. It is assumed that the MBA degree adds nothing to
productivity. A high-skilled worker is relatively better at managing, while a
low-skilled worker is relatively better at blue-collar work. The employer’s net
profits from the possible skill-assignment matches are given in the following
table:

Assignment
M B

Skill
H 10 5

L 0 3

Given the information about the game that is laid out in (1)–(4), the complete
game tree is represented in Figure 16.1. Because player 2 does not know player 1’s
type and only observes his choice, there are two information sets. The two nodes that
follow the choice U are in one information set, and the two nodes that follow the
choice D are in the second information set. In the analysis that follows, we refer to
the first information set as IU and to the second as ID.

1. It is clearly true that obtaining an MBA degree from a prestigious university acts as a strong signal
of one’s ability. I can attest, however, that—at least at the University of California, Berkeley, where
I currently teach—there is also a serious productive component to the MBA program, from which
students certainly benefit.



教育的信号传递
博弈树

9

• 参与⼈ 2 仅能观察到参与⼈ 1 的选择，  
因此他有两个信息集：  和  
 
在  中的信念为  
在  中的信念为  
 
        


• 当参与⼈ 1 的⾏为策略为  
 
         
 
时，根据⻉叶斯公式， 
 

     

 

    

IU ID

IU (μU, 1 − μU)
ID (μD, 1 − μD)

μa = Pr(θ1 = H ∣ a1 = a)

σθ = Pr(a1 = U ∣ θ1 = θ)

μU =
pσH

pσH + (1 − p)σL

μD =
p(1 − σH)

p(1 − σH) + (1 − p)(1 − σL)
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FIGURE 16.1 The MBA game.

First, to define beliefs, let µU denote the belief of player 2 that player 1’s type is H

conditional on player 1 choosing U, and similarly let µD denote the belief of player
2 that player 1’s type is H conditional on player 1 choosing D. These beliefs will
be determined by the distribution of Nature’s choice, together with the beliefs that
player 2 holds about the strategy that player 1 is playing. For equilibrium analysis,
these beliefs will be determined according to requirements 15.2 and 15.3 described
in Section 15.2.

In general if player 1 is using a mixed strategy in which type H chooses U with
probability σH and type L chooses U with probability σL, and if both σH and σL

are strictly between 0 and 1 (i.e., the two types are choosing nondegenerate mixed
strategies) then requirement 15.2 implies that by Bayes’ rule

µU = pσH

pσH + (1 − p)σL
(16.1)

and

µD = p(1 − σH)

p(1 − σH) + (1 − p)(1 − σL)
. (16.2)

Notice that if both σH = σL = 1 (both types are choosing U ) then beliefs are well
defined only by (16.1) from Bayes’ rule, so that µU = p, while from (16.2) beliefs
are not well defined by Bayes’ rule, so we have the freedom to choose µD. Similarly
if both σH = σL = 0 (both types are choosing D) then µU is not well defined while
µD = p.

We are now ready to proceed to find the perfect Bayesian equilibria in the MBA
game. Because each player has two information sets with two actions in each of these
sets, each player has four pure strategies. Let player 1’s strategy be denoted aH

1 aL
1 ,

where aθ
1 ∈ {U, D} denotes what player 1 does if he is type θ ∈ {H, L}. Similarly let

aU
2 aD

2 denote player 2’s strategy, where ak
2 ∈ {M, B} denotes what player 2 does if

he observes that player 1 chose k ∈ {U, D}.
To make our analysis more straightforward, assume that Nature chooses player

1’s type according to p = 1
4 , so that we can derive the matrix that is the normal-

form representation of the MBA Bayesian game. As we have demonstrated earlier
for the entry game, the payoffs in the matrix are calculated by taking each pair of

5

(σH, σL) ≠ (0, 0)

(σH, σL) ≠ (1, 1)



教育的信号传递
 时的 BNE 和 PBEp = 1/4

• 纯策略集合为  



• 事前期望回报： 
 
例如  
 
 
 
 
	 	 	 	 	   纯策略 BNE 为 , 

A1 = {UU, UD, DU, DD}
A2 = {MM, MB, BM, MM}

v1(UD, MB) = 1
4 × 10 + 3

4 × 1 = 3.25

⇒ (UU, BB) (DU, BM)

10
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pure strategies, observing which paths are played with the different probabilities that
are due to Nature’s choice, and then writing down the derived expected payoffs from
this pair of strategies. For example, if (UD, MB) are the pair of strategies then with
probability 1

4 Nature chooses type H for player 1 who chooses U, and in response
player 2 chooses M , yielding a payoff pair of (10, 10). This follows because player
1 gets a wage of 10 and incurs no cost of obtaining an MBA, while player 2 assigns
a high-skill worker to a managerial job, so he obtains a payoff of 10 as well. With
probability 3

4 Nature chooses type L for player 1 who chooses D, and in response
player 2 chooses B, yielding a payoff pair of (1, 3). This follows because player 1’s
net payoff is 6 − 5 = 1 (wage equal to 6 and a cost of studying equal to 5) and player
2’s net payoff is 3 (assigning a low-skill worker to a blue-collar job). The expected
pair of payoffs for the players from the strategy (UD, MB) is therefore

(v1, v2) = 1
4
(10, 10) + 3

4
(1, 3) = (3.25, 4.75).

Similarly we can calculate the expected payoffs for all the other 15 entries in the
Bayesian game matrix. Notice that when player 1 plays the same action for the
different types (rows 1 and 4) then part of player 2’s strategy is never used, so
there are repeat entries which reduce the number of calculations needed. The matrix
representation is

Player 2
MM MB BM BB

UU 10, 2.5 10, 2.5 6, 3.5 6, 3.5

Player 1
UD 6.25, 2.5 3.25, 4.75 5.25, 1.25 2.25, 3.5

DU 9.5, 2.5 8.5, 1.25 6.5, 4.75 4.5, 3.5

DD 5.75, 2.5 1.75, 3.5 5.75, 2.5 1.75, 3.5

If we follow the method of underlining player 1’s best responses for each column
and overlining player 2’s best responses for each row, we immediately observe that
there are two pure-strategy Bayesian Nash equilibria: (UU, BB) and (DU, BM).
To see whether these can be part of a perfect Bayesian equilibrium, we need to find
a system of beliefs that support the proposed behavior, and that together with these
strategies satisfy requirements 15.1–15.4.

From proposition 15.1 it follows that (DU, BM) can be part of a perfect Bayesian
equilibrium because all of the information sets are reached with positive probability.
In particular the derived beliefs from (DU, BM) are µU = 0 and µD = 1.2 It follows
from the Bayesian game matrix that player 2 is playing a best response to these beliefs
in each of his information sets, and that player 1 is playing a best response in each of
his. So (DU, BM) together with µU = 0 and µD = 1 constitute a perfect Bayesian
equilibrium.

What about the pair of strategies (UU, BB)? From (16.1) and (16.2), unique
beliefs are derived only for information set IU because ID is reached with zero
probability. In particular µU = 1

4 and µD is not well defined. It is easy to check that

2. Using equations (16.1) and (16.2) that we derived from Bayes’ rule, this is the case where σH = 0
and σL = 1, and the resulting µU and µD follow.
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First, to define beliefs, let µU denote the belief of player 2 that player 1’s type is H

conditional on player 1 choosing U, and similarly let µD denote the belief of player
2 that player 1’s type is H conditional on player 1 choosing D. These beliefs will
be determined by the distribution of Nature’s choice, together with the beliefs that
player 2 holds about the strategy that player 1 is playing. For equilibrium analysis,
these beliefs will be determined according to requirements 15.2 and 15.3 described
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In general if player 1 is using a mixed strategy in which type H chooses U with
probability σH and type L chooses U with probability σL, and if both σH and σL

are strictly between 0 and 1 (i.e., the two types are choosing nondegenerate mixed
strategies) then requirement 15.2 implies that by Bayes’ rule

µU = pσH
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(16.1)

and
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Notice that if both σH = σL = 1 (both types are choosing U ) then beliefs are well
defined only by (16.1) from Bayes’ rule, so that µU = p, while from (16.2) beliefs
are not well defined by Bayes’ rule, so we have the freedom to choose µD. Similarly
if both σH = σL = 0 (both types are choosing D) then µU is not well defined while
µD = p.

We are now ready to proceed to find the perfect Bayesian equilibria in the MBA
game. Because each player has two information sets with two actions in each of these
sets, each player has four pure strategies. Let player 1’s strategy be denoted aH

1 aL
1 ,

where aθ
1 ∈ {U, D} denotes what player 1 does if he is type θ ∈ {H, L}. Similarly let

aU
2 aD

2 denote player 2’s strategy, where ak
2 ∈ {M, B} denotes what player 2 does if

he observes that player 1 chose k ∈ {U, D}.
To make our analysis more straightforward, assume that Nature chooses player

1’s type according to p = 1
4 , so that we can derive the matrix that is the normal-

form representation of the MBA Bayesian game. As we have demonstrated earlier
for the entry game, the payoffs in the matrix are calculated by taking each pair of

5



教育的信号传递
 时的 BNE 和 PBEp = 1/4

• 双⽅选择  时，到达  和  的概率 
都为正，因此通过⻉叶斯公式可以找到⽀持 
此均衡的信念： 
 

 对应 , ，此时 
 

    ,   
 

因此，  和信念  构成了⼀个 PBE 
 

 参与⼈ 2 可以从参与⼈ 1 的选择中知道其类型（这种均衡称为分离均衡 separating equilibrium）


• 双⽅选择  时，到达  的概率为 ，对应的信念为  
参与⼈ 2 在  时的条件期望为 
 

    ,     
 

因此，  成为最优反应的条件是 。  和信念  都可以构成 PBE 
 

 参与⼈ 2 ⽆法从参与⼈ 1 的选择中知道其类型（这种均衡称为混同均衡 pooling equilibrium）

(DU, BM) IU ID

DU σH = 0 σL = 1

μU =
1/4 ⋅ 0

1/4 ⋅ 0 + 3/4 ⋅ 1
= 0 μD =

1/4 ⋅ 1
1/4 ⋅ 1 + 3/4 ⋅ 0

= 1

(DU, BM) (μU = 0, μD = 1)

⇒

(UU, BB) IU 1 μU = 1
4

ID

v2(UU, B ∣ ID, μD) = 5μD + 3(1 − μD) = 2μD + 3 v2(UU, M ∣ ID, μD) = 10μD + 0(1 − μD) = 10μD

B μD ≤ 3
8 (UU, BB) (μU = 1

4 , μD ∈ [0, 3
8 ])

⇒

11
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FIGURE 16.1 The MBA game.

First, to define beliefs, let µU denote the belief of player 2 that player 1’s type is H

conditional on player 1 choosing U, and similarly let µD denote the belief of player
2 that player 1’s type is H conditional on player 1 choosing D. These beliefs will
be determined by the distribution of Nature’s choice, together with the beliefs that
player 2 holds about the strategy that player 1 is playing. For equilibrium analysis,
these beliefs will be determined according to requirements 15.2 and 15.3 described
in Section 15.2.

In general if player 1 is using a mixed strategy in which type H chooses U with
probability σH and type L chooses U with probability σL, and if both σH and σL

are strictly between 0 and 1 (i.e., the two types are choosing nondegenerate mixed
strategies) then requirement 15.2 implies that by Bayes’ rule

µU = pσH

pσH + (1 − p)σL
(16.1)

and

µD = p(1 − σH)

p(1 − σH) + (1 − p)(1 − σL)
. (16.2)

Notice that if both σH = σL = 1 (both types are choosing U ) then beliefs are well
defined only by (16.1) from Bayes’ rule, so that µU = p, while from (16.2) beliefs
are not well defined by Bayes’ rule, so we have the freedom to choose µD. Similarly
if both σH = σL = 0 (both types are choosing D) then µU is not well defined while
µD = p.

We are now ready to proceed to find the perfect Bayesian equilibria in the MBA
game. Because each player has two information sets with two actions in each of these
sets, each player has four pure strategies. Let player 1’s strategy be denoted aH

1 aL
1 ,

where aθ
1 ∈ {U, D} denotes what player 1 does if he is type θ ∈ {H, L}. Similarly let

aU
2 aD

2 denote player 2’s strategy, where ak
2 ∈ {M, B} denotes what player 2 does if

he observes that player 1 chose k ∈ {U, D}.
To make our analysis more straightforward, assume that Nature chooses player

1’s type according to p = 1
4 , so that we can derive the matrix that is the normal-

form representation of the MBA Bayesian game. As we have demonstrated earlier
for the entry game, the payoffs in the matrix are calculated by taking each pair of
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PBE 的精炼
Ref inement of PBE

• 在前⾯的博弈中，PBE ⽆法帮助我们排除混同均衡


• 在  中，我们可以考虑不同类型的 
参与⼈ 1 有⽆改变策略的可能


- 类型 ：如果选择  且参与⼈ 2 选择  
则参与⼈ 1 的回报将从  上升为 


- 类型 ：如果选择  且参与⼈ 2 选择  
则参与⼈ 1 的回报将从  下降为 


因此，只有类型  的参与⼈ 1 才会试图通过选择  说服参与⼈ 2 相信⾃⼰的类型为  

这种推理⽅式称为直觉标准（intuitive criterion, Cho & Kreps, 1987），即针对 PBE ，如果存在⼀个⾮均衡策略的⾏动 
，⼀个类型 ，以及⼀个类型的⼦集 ，能同时满⾜下⾯两个条件时，称  不符合直觉标准：


1. 对于  中任意类型的参与⼈ 1 ，⽆论参与⼈ 2 的信念是什么，选择  都会带来⽐均衡策略更低的回报


2. 类型  的参与⼈ 1 如果能令参与⼈ 2 相信⾃⼰的类型不在  中，则选择  会带来⽐均衡策略更⾼的回报 

• 在  中， , ,  不符合直觉标准；⽽  符合。因此我们可以排除混同均衡 

(UU, BB)

H D M
6 8

L D M
6 5

H D H

σ*
a1 ∈ A1 θ1 ∈ Θ1 Θ̂ ⊂ Θ1 σ*

Θ̂ a1

θ1 Θ̂ a1

(UU, BB) a1 = D Θ̂ = {L} θ1 = H (DU, BM) (UU, BB)
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FIGURE 16.1 The MBA game.

First, to define beliefs, let µU denote the belief of player 2 that player 1’s type is H

conditional on player 1 choosing U, and similarly let µD denote the belief of player
2 that player 1’s type is H conditional on player 1 choosing D. These beliefs will
be determined by the distribution of Nature’s choice, together with the beliefs that
player 2 holds about the strategy that player 1 is playing. For equilibrium analysis,
these beliefs will be determined according to requirements 15.2 and 15.3 described
in Section 15.2.

In general if player 1 is using a mixed strategy in which type H chooses U with
probability σH and type L chooses U with probability σL, and if both σH and σL

are strictly between 0 and 1 (i.e., the two types are choosing nondegenerate mixed
strategies) then requirement 15.2 implies that by Bayes’ rule
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pσH + (1 − p)σL
(16.1)

and

µD = p(1 − σH)

p(1 − σH) + (1 − p)(1 − σL)
. (16.2)

Notice that if both σH = σL = 1 (both types are choosing U ) then beliefs are well
defined only by (16.1) from Bayes’ rule, so that µU = p, while from (16.2) beliefs
are not well defined by Bayes’ rule, so we have the freedom to choose µD. Similarly
if both σH = σL = 0 (both types are choosing D) then µU is not well defined while
µD = p.

We are now ready to proceed to find the perfect Bayesian equilibria in the MBA
game. Because each player has two information sets with two actions in each of these
sets, each player has four pure strategies. Let player 1’s strategy be denoted aH

1 aL
1 ,

where aθ
1 ∈ {U, D} denotes what player 1 does if he is type θ ∈ {H, L}. Similarly let

aU
2 aD

2 denote player 2’s strategy, where ak
2 ∈ {M, B} denotes what player 2 does if

he observes that player 1 chose k ∈ {U, D}.
To make our analysis more straightforward, assume that Nature chooses player

1’s type according to p = 1
4 , so that we can derive the matrix that is the normal-

form representation of the MBA Bayesian game. As we have demonstrated earlier
for the entry game, the payoffs in the matrix are calculated by taking each pair of
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⾮升即⾛制度下的信号传递
Publish or perish game

• “⾮升即⾛”是⼤学教师预聘-⻓聘制的另⼀种称谓，即教师在的预聘期结束前如果能成功
晋升为副教授或教授，就可以获得⻓聘合同，否则就不继续聘⽤。因为能否晋升通常和发
表⽂章的多少成正相关，因此英⽂中称⾮升即⾛为 publish-or-perish


• 假设教师按其能⼒分为  和  两类，各⾃的能⼒为  和 ，且 。任意教师
为  类型的概率为 


• ⼤学在招聘阶段⽆法准确判断应聘者的类型，但是希望⻓期聘⽤  类型的教师，同时希
望在预聘期后不再继续聘⽤  类型的教师


• 受聘教师将发表论⽂数看作信号。假设发表论⽂本身没有回报，发表  篇论⽂的劳动成本
为 。⻓聘给教师带来的回报为 ，⽆法获得⻓聘则回报为 


• 学校⻓聘  类型的教师获得的回报为 ，⻓聘  类型的教师获得的回报为 ，不继续聘
⽤获得的回报为 

H L θH θL θH > θL > 0
H p < 0.5

H
L

q
q/θ V 0

H 1 L −1
0
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⾮升即⾛制度下的信号传递
博弈树

14

Nature

H L

p < 0.5 1 − p > 0.5

V − q′￼/θH

1

1 1

T N T N

T NT N

q′￼ q′￼

q′￼′￼q′￼′￼

… … … …2

2

−q′￼/θH

0
−q′￼/θL

0
V − q′￼/θL

−1

μ(q′￼) 1 − μ(q′￼)

• 参与⼈ 1 为教师  
教师选择 


• 参与⼈ 2 为⼤学  
⼤学选择  或 ， 

 为⻓聘（tenure） 
 为不续聘


• ⼤学的信念： 
在观察到教师的⾏ 
动  时，认为其类  
型为  的概率是 
 

q ≥ 0

T N
T
N

q
H

μ(q)



⾮升即⾛制度下的信号传递
混同完美⻉叶斯均衡（pooling PBE）

• 参与⼈ 1 有⽆限多个⾏动可以选择，因此 
我们⽆法通过博弈矩阵求 BNE，只能通过 
PBE 的满⾜的性质推导均衡策略


• 在混同均衡中，参与⼈ 1 的策略为  
，参与⼈ 2 的策略为 




• PBE 满⾜序贯理性，因此我们可以⽤类似逆向归纳的⽅式分析


- 参与⼈ 2 在观察到  时（在均衡路径上），根据⻉叶斯公式，其信念为 ，此时 
 

	          

- 参与⼈ 2 观察到其他  时（偏离均衡路径），我们可以考虑任意信念 ，但是为了使参与⼈ 1 选择均衡
策略，我们选择令参与⼈ 1 的回报最低的信念，即 ，此时 

(qH, qL) = (q*, q*)
s(q) : {0,1,2,…} → {T, N}

q* μ(q*) = p

E[v2((q*, q*), s(q*) = T ) ∣ q*] = p × 1 + (1 − p) × (−1) = 2p − 1 < 0
E[v2((q*, q*), s(q*) = N) ∣ q*] = p × 0 + (1 − p) × 0 = 0

⇒ s(p*) = N

q ≠ q* μ
μ(q) = 0 s(q) = N
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⾮升即⾛制度下的信号传递
混同完美⻉叶斯均衡（pooling PBE）

• 参与⼈ 1 已知参与⼈ 2 的最优策略和信念为 
 

	 ,   

 
则 
 

	 ,             

• 因此，混同 PBE 是 , 


• 在均衡路径上，因为⼤学⽆法辨别教师的类型，任何类型的教师都会选择不发表论⽂

s(q) = N μ(q) = {p  if q = q*
0  if q ≠ q*

v1((q*, q*), s(q); H) = − q*/θH

v1((q*, q*), s(q); L) = − q*/θL

v1((q′￼, q′￼), s(q); H) = − q′￼/θH

v1((q′￼, q′￼), s(q); L) = − q′￼/θL
⇒ q* = 0

((qH, qL) = (0,0), s(q) = N) μ(q) = {p  if q = 0
0  if q ≠ 0
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⾮升即⾛制度下的信号传递
分离完美⻉叶斯均衡（separating PBE）

• 分离均衡中参与⼈ 1 的策略是 ， 



• 在均衡路径上，参与⼈ 2 可以通过参与⼈ 1  
的⾏动判断其类型，因此  
 

	 ,  
 

	 ,  

• 偏离均衡路径时，参与⼈ 2 选择对最不利于参与⼈ 1 的信念，因此 ， 


• 综上，参与⼈ 2 的最优策略和信念是 
 

	  ,    

(qH, qL) = (q′￼, q′￼′￼)
q′￼ ≠ q′￼′￼

μ(q′￼) = 1 μ(q′￼′￼) = 0

s(q′￼) = T s(q′￼′￼) = N

μ(q) = 0 s(q) = N

s(q) = {T  if q = q′￼

N  if q ≠ q′￼

μ(q) = {1  if q = q′￼

0  if q ≠ q′￼

17

Nature

H L

p < 0.5 1 − p > 0.5

V − q′￼/θH

1

1 1

T N T N

T NT N

q′￼ q′￼

q′￼′￼q′￼′￼… … … …2

2

−q′￼/θH

0
−q′￼/θL

0
V − q′￼/θL

−1

μ(q′￼) 1 − μ(q′￼)



⾮升即⾛制度下的信号传递
分离完美⻉叶斯均衡（separating PBE）

• 参与⼈ 1 的回报 
 

	  

 
 当  时，参与⼈ 1  

    应当选择  
 

 不等式条件针对任意  成⽴，因此  
 

	  

 
 当  且  时，参与⼈ 1 应当选择  

 
因此， , 

v1(qH = q′￼, s(q); H) = V − q′￼/θH

v1(qH = q ≠ q′￼, s(q); H) = q/θH

⇒ V − q′￼/θH ≥ − q/θH ⇔ q′￼≤ VθH + q
q′￼

⇒ q ≠ q′￼ q′￼≤ VθH

v1(qL = q′￼′￼, s(q); L) = − q′￼′￼/θL

v1(qL = q′￼, s(q); L) = V − q′￼/θL

v1(qL = q (q ≠ q′￼, q ≠ q′￼′￼), s(q); L) = − q/θL

⇒ −q′￼′￼/θL ≥ V − q′￼/θL ⇔ q′￼≥ VθL + q′￼′￼ −q′￼′￼/θL ≥ − q/θL ⇔ q′￼′￼≤ q (q ≠ q′￼, q ≠ q′￼′￼) q′￼′￼

q′￼′￼= 0 VθL ≤ q′￼≤ VθH
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⾮升即⾛制度下的信号传递
分离完美⻉叶斯均衡（separating PBE）

• 综上，分离 PBE 满⾜ 
 
	  
 

	  

 

	  

• 其中，  类型参与⼈ 1 的回报为 ,  类型参与⼈ 1 的回报为 


• 参与⼈ 1 获得最⼤回报的策略为 ，且仅有此策略符合直觉标准 
因为当  时不符合直觉标准：


-  类型的参与⼈ 1 如果选择 ，则回报为负（⽐  时下降）


-  类型的参与⼈ 1 如果选择 ，则回报为最⼤（⽐  时上升）

(qH, qL) ∈ {(q, 0) : q ∈ [VθL, VθH], q 为整数}

s(q) = {T  if q = q′￼

N  if q ≠ q′￼

μ(q) = {1  if q = q′￼

0  if q ≠ q′￼

H V − q/θH ≥ 0 L 0

qH = ⌈VθL⌉
qH ∈ (VθL, VθH]

L qL = ⌈VθL⌉ qL = 0

H qH = ⌈VθL⌉ qH ∈ (VθL, VθH]
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