gretl 初次使用指南

黄嘉平 2021年2月 gretl version 2021a

简介

Gretl (Gnu Regression, Econometrics and Time-series Library) 是在 GNU 协议下开发的跨 系统(cross-platform)、免费(free)、开源(open-source)的计量经济分析软件。该软 件以C语言写成,运行速度快,拥有类似 EViews 的简洁而直观的 GUI 操作界面,支持大多 数常用的计量模型,支持多种数据格式,可编程,可满足从本科到博士研究生阶段的学习和 科研需要。

• gretl 官网: <u>http://gretl.sourceforge.net/</u>

安装

访问 gretl 官网,找到并下载符合你的操作系统的最新版本(latest release, 2021年2月为 2021a)。参照网站说明运行安装程序进行安装。

- Windows 版: <u>http://gretl.sourceforge.net/win32/</u>
- Mac 版: <u>http://gretl.sourceforge.net/osx.html</u>

安装时或安装后可以自行设定界面和菜单语言。由于中文翻译尚不完善,因此建议使用英 语。

帮助文档

下列文档都可以在 gretl 的 *Help* 菜单下找到,或从官网下载。User's Guide 中包含的信息 足够使初学者精通 gretl 的使用方法,但是信息量太大,不利于第一次接触 gretl 的用户直接 参考。本文的主要目的是使初学者了解 gretl 的基本用法,使其有能力独自查阅资料从而自 学提高。

- User's Guide: <u>https://sourceforge.net/projects/gretl/files/manual/gretl-guide-a4.pdf</u>
- Command Reference: <u>http://gretl.sourceforge.net/gretl-help/cmdref.html</u>
- Function Reference: <u>http://gretl.sourceforge.net/gretl-help/funcref.html</u>
- hansl primer: <u>http://sourceforge.net/projects/gretl/files/manual/hansl-primer.pdf</u> (hansl 是 gretl 内嵌的编程语言)

第一次在 Help 菜单中打开 PDF 类文档时,gretl 会自动从官网下载该文档并保存在本地, 这可能会花一些时间(网络状态不好时也可能因为连接超时而下载失败,建议多尝试几次或 更换网络环境后再尝试)。下载成功后即可快速打开文档。

初次使用指南

这里我使用线性回归分析向第一次接触 gretl 的读者展示如何使用 gretl 的基本功能¹。在网 上也可以找到类似的学习资源(如Youtube),可以作为本文的补充。

The main window 主程序窗

在第一次打开 gretl 时,即可看到主程序窗(标题显示为 "gretl" 的程序窗,如 Fig 1)。基本上所有功能都可以在菜单栏里找到。如图所示,有些菜单栏成灰色且无法选取,这是因为在这一阶段它们还无法发挥作用。下面让我们来一起尝试完成简单的线性回归分析。

	gretl										
File	Tools	Data	View	Add	Sample	Variable	Model	Help	6		
No d	atafile l	oaded							/Users/huangjp/gretl		
ID #	# Variable name				criptive l	abel					
111	2		fx 🕻		β 🗎						

Fig 1. The main window of gretl

Data Import 导入数据

进行计量分析前,首先要导入数据。gretl 自身包含了一些练习用数据集,我们可以依次点 击 *File > Open data > Sample file...* 选择数据集(Fig 2)。此时会出现一个名为 "gretl: data files" 的新窗口(Fig 3)。这里我们双击选择 *Ramanathan* 分类下的 *data3-1 (House prices and sqft)*,该数据即被导入(注意主程序窗的变化,Fig 4)。

¹本文中使用的是 Mac 版本。所有图片用版本 2019c 生成并在版本 2021a 中确认。

					gretl	
File	Tools	Data V	'iew Add Sa	mple Variable	Model Hel	
0	pen data		>	🗎 User file	жо	/Users/huangjp/gretl
A	ppend da	ıta		📙 Sample file		
Si E: Si N N	ave data ave data a xport dat end To ew data s lear data	as a set set	¥S ¥N	1. data6-4.g 2. data3-9.g 3. cps_ch3.d 4. caschool.o 5. wage2.gd 6. data3-1.g	dt dt ta dta t dt	
W	/orking di	irectory.				
Si Si D Fi	cript files ession file atabases unction p	es Jackages	>			
41 Q	uit		₩Q			
	2	f:	c 📜 🛃 ĝ	9 🖻		

Fig 2. Built-in data sets.

	gretl: data files							
🖹 🕕		3						
Gretl Gr	reene Ramanathan							
File	Summary							
data2-1	SAT scores							
data2-2	College and high school GPAs							
data2-3	Unemployment, inflation and wages							
data3-1	House prices and sqft							
data3-2	Income and health care spending							
data3-3	Patents and R&D expenditures							
data3-4	Gross Income and Taxes by States							
data3-5	Sealing compound shipment data							
data3-6	data3-6 Disposable income and consumption							
data3-7	Toyota station wagon repairs							
A=Fetch	Tuition and salary gain for MRAs							

Fig 3. Data selection window.

•	gretl									
File	Tools	Data	View	Add	Sample	Variable	Model	Help		8
data3	8–1.gdt									/Users/huangjp/gretl
ID #	Var	iable r	name	Des	criptive	label				
0	con	st								
1	pric	e		Sale	price in	thousands	of dolla	rs (Range 199.9	- 505)	
2	sqft			Squ	are feet o	f living are	ea (Range	e 1065 - 3000)		
L						Undat	od: Eull r	$2ng_0 1 14$		
_	~ -			0		onual	eu. r'uii r	ange 1 – 14		
1111	2		fx 🕻		β					

Fig 4. Data loaded.

Data description 描述性统计

在 Fig 4 中可以看到三个变量(每行为一个变量),分别为 ID #0 至 #2。所有的变量都包含 14个观测值,且为横截面数据(窗口底部的 "Undated: Full range 1-14")。除编号外,每 个变量都有自己的名称。例如第一个变量(ID #0)的名称为 const,意为固定变量,其所有 观测值都为 1。此变量对应线性回归模型中的截距。其他两个变量名称分别为 price 和 sqft,分别为房屋的售价和面积。双击一个变量所在行会调出该变量的具体观测值。

变量的描述性统计量可以通过菜单 View > Summary statistics 生成。点击该菜单会跳出一 个名为 "gretl: summary statistics" 的窗口(Fig 5),该窗口左侧为可以生成描述性统计量 的变量。将目标变量选择后点击箭头即可在右侧添加或消除。选择好变量后(将目标变量都 添加到右侧),点击 OK 即可。此时你会被询问是否生成主要统计量还是全部统计量,我们 选择全部统计量,即可看到结果(Fig 6)。

	gretl: summary statistics
	summary statistics
price	
sqft	
	🔒 Clear 🛛 💥 Cancel 🦪 🖉 OK

Fig 5. Choose variables for summary statistics.

		gretl: summary s	statistics		
2 4 G Q					Ð
price sqft	Mean 317.49 1910.9	Median 291.50 1835.0	Minimum 199.90 1065.0	Maximum 505.00 3000.0	
price sqft	Std. Dev. 88.498 577.76	C.V. 0.27874 0.30234	Skewness 0.65346 0.48526	Ex. kurtosis -0.52983 -0.67212	
price sqft	IQ range 154.50 832.75	Missing obs. 0 0			

Fig 6. Result of summary statistics.

在 View 菜单中我们也可以获得相关性矩阵, 散点图等其他描述行统计结果。Fig 7 显示了 price 和 sqft 间的散点图并附加了直线拟合结果, 你可以通过 View > Graph specified vars > X-Y scatter.... 获得此图。

Fig 7. A scatter plot.

Regression analysis 回归分析

回归分析的功能被放在 Model 菜单中。选择 Model > Ordinary Least Squares 即可调出 OLS 回归分析的窗口。我们可以通过选择因变量和自变量来确定需要分析的线性模型(如 Fig 8)。需要注意的是,不要轻易消除自变量中的 const 变量,除非你有意为之。

e e e g	retl: specify	model
4	OLS	
const price		Dependent variable price
sqrt		 Set as default Regressors const sqft
Robust standard er	rors HC1	
Help	Clear	💥 Cancel 🦪 OK

Fig 8. Specify a model.

我们想了解房屋价格和面积间的关系,因此我们的回归模型为

$$\text{price}_i = \beta_0 + \beta_1 \text{sqrt}_i + u_i$$
.

此模型对应 Fig 8 中的选择,即 price 为因变量, const 和 sqft 为自变量。

OLS 回归结果显示在新生成的窗口中(Fig 9, "gretl: model 1")。和其他计量分析软件一样,你可以在结果中找到回归系数的拟合结果、标准误差、*t*统计量、*p*值等信息,以及因 变量的样本矩、残差平方和、回归标准误差、*R*²等其他信息。在这个窗口的菜单栏中,你 还可以找到各种诊断检验,保存回归结果,画图,以及完成针对拟合模型的其他分析。

				gre	etl: moo	del 1				
File Edi	t Tests	Save	Graphs	s Ana	alysis	LaT	eΧ			6
Model 1 Depende	: OLS, ι nt varia	using c able: p	bserva brice	ations	s 1–14	1				
	сс	effici	lent	std.	erro	r	t-ratio	р-	value	
const sqft	5	52.3509 0.1387) 750	37.28 0.01	855 187329	9	1.404 7.407	0. 8.	1857 20e-06 ***	
Mean de Sum squ R-squar F(1, 12 Log-lik Schwarz	pendent ared res ed) elihood criteri	var id .on	317.49 18273. 0.8205 54.860 70.084 145.44	929 57 522 951 421 465	S.D. S.E. Adjus P-va Akai Hanna	dep of sted lue(<e c<="" td=""><td>endent regress: R-squa F) riterion uinn</td><td>var ion red n</td><td>88.49816 39.02304 0.805565 8.20e-06 144.1684 144.0501</td><td></td></e>	endent regress: R-squa F) riterion uinn	var ion red n	88.49816 39.02304 0.805565 8.20e-06 144.1684 144.0501	

Fig 9. Regression results.

From a beginner to a specialist 从初学者到专家

以上我们通过简单的回归分析了解了如何使用 gretl 进行计量分析。虽然只是小试牛刀,但 你已经在成为专家的路上迈出了第一步。在计量经济学的学习和科研过程中,对分析软件的 使用会变得非常频繁。你需要更加深入的了解如何应对现实数据带来的各种意想不到的麻 烦,如何通过编程使分析过程更加有效率,以及如何正确的把理论模型应用到实际的分析过 程中。幸运的是,所有的这些难点都将在你的不懈努力下迎刃而解,而你需要的或许只是一 点点指引和鼓励。学会利用 *Help* 菜单里提供的宝贵信息将使你的学习过程事半功倍。